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Although there is a growing interest in understanding how per-
ceptual mechanisms influence behavioral evolution, few studies
have addressed how perception itself is shaped by evolutionary
forces. We used a combination of artificial neural network models
and behavioral experiments to investigate how evolutionary his-
tory influenced the perceptual processes used in mate choice by
female túngara frogs. We manipulated the evolutionary history of
artificial neural network models and observed an emergent bias
toward calls resembling known ancestral states. We then probed
female túngara frogs for similar preferences, finding strong biases
toward stimuli that resemble a call hypothesized for a recent
ancestor. The data strongly suggest that female túngara frogs
exhibit vestigial preferences for ancestral calls, and provide a
general strategy for exploring the role of historical contingency in
perceptual biases.

Early ethologists reported that animal signals evolved toward
simplicity, specificity, and salience—hallmarks of the mini-

mal stimulus, the ‘‘sign stimulus,’’ that was required to evoke a
response from its receiver (1, 2). This observation suggested that
signal form was being shaped by the perceptual mechanisms of
the receiver, a view that has been rekindled by recent work in
sexual selection and sensory ecology (3–7; reviewed in 8–10).
The renewed interest in proximate causes of behaviors has
prompted a number of workers to return to the methodical
titration of receiver decision mechanisms used in classic ethology
(e.g., refs. 2, 11, and 12; more recently, refs. 13–17); the resulting
generalization gradients (or preference functions, as they are
known in mate choice) are thought to strongly affect the fitness
of individual signalers (18). Although the shapes of generaliza-
tion gradients are presumed to influence signal evolution, and to
be of interest in their own right, few ethologists have addressed
the forces that determine these shapes (but see refs. 19–26).

A number of groups have begun to use artificial neural
network models to investigate the evolution of perceptual mech-
anisms (24–31). Because neural network models distribute the
representation of a signal across many ‘‘neurons,’’ these models
often generalize as an automatic result of training (32, 33),
making them useful tools for the exploration of preference
functions. In recent studies, we evolved artificial neural networks
along distinct evolutionary trajectories and found that their
emergent responses to novel signals were strongly shaped by
their selection histories (31, 34, 35). Moreover, those networks
with a history approximating that of our focal species, the
túngara frog, were better at reproducing female responses to test
stimuli. These findings and others (36, 37) indicate that female
túngara frogs may exhibit preferences that are remnants of past
selection for species recognition. They do not, however, suggest
what form vestigial preferences might take.

We suggest that the evolutionary persistence of ancestral
recognition mechanisms contributes to current preferences, and
that this contribution biases preference functions in favor of
ancestor-like signals. To test this hypothesis, we manipulate the
histories of artificial neural networks and assess their emergent
preference functions. We probe the response biases of networks
with stimuli that vary in similarity to the túngara frog call along
an axis that passes near the most recent ancestral call of the

networks. We test the empirical validity of the network findings
by comparing the patterns of vestigial preference in neural
networks to female responses on a similar transect of calls.

We begin the neural network simulations by assigning net-
works one of two history types (Fig. 1; see also refs. 31, 34, and
35). The first is a ‘‘mimetic history,’’ which roughly mimics the
history hypothesized for female túngara frogs. Mimetic history
networks are selected to recognize each of four calls in a
sequence beginning with the root call reconstructed for the
Physalaemus pustulosus species group, ascending through a series
of nodes hypothesized for túngara frog call evolution, and ending
with the call of the túngara frog. The second is a ‘‘mirrored
history,’’ which precisely mirrors the trajectory of calls in the
mimetic history, but begins in a different region of acoustic
space. Networks of both history types are required to recognize
the túngara frog call, but are derived from populations selected
to recognize distinct ancestral calls. The mimetic history approx-
imates the reconstructed history of túngara frogs; the mirrored
history controls for the diversity of calls the networks have been
selected to recognize, but has no natural counterpart (ref. 31;
reviewed in refs. 34, 35, and 38).

Conventional approaches to unimodal generalization gradi-
ents and preference functions predict that, as a stimulus becomes
less like the conspecific signal, receiver responses will decline
without respect to the region of stimulus space the novel stimulus
occupies (39–41); the vestigial-preference hypothesis, however,
predicts that responses will persist in the vicinity of ancestral
stimuli. Because the ancestral calls of mimetic and mirrored
histories differ reliably in one call character—the whine shape,
or time to half frequency (THHz, Fig. 1b)—the vestigial-
preference hypothesis predicts mutually exclusive response bi-
ases for networks of the two history types, permitting a strong
test of the hypothesis (see Figs. 2 and 3a). When presented with
calls that deviate from the túngara THHz, networks should
respond most to stimuli that resemble ancestral calls: mimetic
history ancestors have a short THHz, mirrored history ancestors
a long THHz.

To test the vestigial-preference hypothesis with female tún-
gara frogs, we constructed a set of six calls that varied along an
axis passing through the túngara frog call and the reconstructed
call of a recent ancestor (Fig. 4a). For convenience, we refer to
the three stimuli resembling the hypothesized ancestral state as
‘‘ancestral’’ calls, and the remaining stimuli as ‘‘anti-ancestral’’
calls. If female túngara frogs exhibit the vestigial preferences
predicted by the neural network models, subjects should prefer
calls resembling a hypothesized ancestor to anti-ancestral calls of
matched similarity. Such a demonstration would suggest that
female túngara frogs retain vestigial preferences, and would
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provide a simple means of probing comparable preferences in
other taxa.

By combining artificial neural network models with behavioral
experiments, we are able to test the vestigial-preference hypoth-
esis on receivers with a known and controlled history (neural
networks). We assess the networks’ external validity by predict-
ing responses in a model species whose history has been recon-
structed based on available phylogenetic data. The two ap-
proaches provide complementary data that, if concordant,
provide a much more compelling view of historical influences
than either approach could provide alone.

Methods
Call Synthesis. Call parameters for extant species and recon-
structed ancestral states were taken from ref. 36. These authors
used a local squared-change parsimony algorithm and branch
lengths derived from mitochondrial DNA data to estimate
ancestral states (see ref. 37 for this and other algorithms used,
and ref. 42 for phylogenetic hypotheses). Estimates based on
other phylogenetic models or assumptions yield similar but not
identical ancestral states, and consistently suggest a role for
phylogenetic history in receiver biases (37). Because we predict
enhanced female responses in the vicinity of the ancestral state,
it is not necessary for the reconstructed ancestor to agree
precisely with a true (but unknowable) ancestor. Inaccuracies in
ancestral reconstruction will reduce the proximity of ancestral
test stimuli to the true ancestor, and should lead to conservative
estimates of vestigial preference. We confirm this result in the
neural network models by constructing test stimuli that do not
pass through the ancestors of either history type, but that differ
in their proximity to the ancestors of each history type.

The túngara frog call is an exponential, descending frequency
sweep known as a whine. The shape of the whine is quantified
by the time from the call’s onset to its mid-frequency, its time to
half frequency (THHz). Network test stimuli were generated by
manipulating the whine shape but leaving all other call param-
eters matched to the call of the túngara frog. THHz varied
between 1.4 standard deviations above and below the túngara
frog call. (Standard deviations are measured for the variation in
THHz of the Physalaemus pustulosus species group and three
outgroup taxa.) Calls tested on neural networks were processed
as previously described (30, 31).

To test female responses, we first synthesized an anti-ancestral
call that was as similar to the túngara frog call as was the most
recent ancestor, while being as different from the ancestor as
possible. Ancestral, anti-ancestral, and túngara frog calls lie
along a single line in the multidimensional space defined by our
call descriptors: We operationally define the ancestor and anti-
ancestor calls to lie at positions �1.0 and �1.0 along this axis
(Fig. 4a). To determine the call characters of the anti-ancestor,
we (i) took each value for the parameters needed to synthesize
a túngara frog call; (ii) subtracted the appropriate call parameter
used to define the ancestor; and (iii) added this difference onto
the túngara frog call. (The túngara frog whine, for example, has
a typical starting frequency of 884 Hz, the ancestral reconstruc-
tion 1050 Hz. The anti-ancestral call therefore has a starting
frequency of (884–1050) � 884 � 718 Hz. Descriptions of all six
call variables and how they were measured are provided in ref.
37.) Variations on this procedure led to six test stimuli: �1.5, 1.0,
0.5, �0.5, �1.0, and �1.5 calls. The call pairs 1.5��1.5, 1.0��1.0
and 0.5��0.5 represent ancestral�anti-ancestral pairs of
matched similarity. Stimuli were synthesized at a sampling rate
of 20 kHz by using a sound synthesis program developed by
J. Schwartz (Pace University, Pleasantville, NY).

Network Evolution and Testing. The neural network architecture
and evolutionary training algorithms are described in detail
elsewhere (30, 31, 34). Briefly, we used a recurrent neural
network architecture made of four layers of neurons. Networks
consisted of an input layer with 15 ‘‘neurons,’’ each responding
to a unique range of frequencies between 261 and 1565 Hz; a
hidden layer that received input directly from the input layer as
well as from a second hidden layer; a second hidden layer, or
context layer, that received input from the first hidden layer; and
an output neuron that received input from the first hidden layer.
The activity of the output neuron at the end of a stimulus window
defines how well a network responds to a given test stimulus.

By using a genetic algorithm (detailed in refs. 30 and 31), we
trained populations of networks to recognize each call along an

Fig. 1. (a) Mimetic and mirrored histories in acoustic space defined by two
dimensions of a principal components analysis (see refs. 31 and 36). Open
circles represent the calls of extant and ‘‘ancestral’’ taxa. The shaded area is
used in subsequent figures. (b) Sonograms of signals used in mimetic and
mirrored histories. Root calls are at bottom of sequence, túngara at top. Each
sonogram is 600 msec long (x axis), and spans from 0 to 1.5 kHz (y axis).

Fig. 2. Schematic depiction of hypotheses for network preference functions.
(a) Mimetic history network exhibiting vestigial preferences. (b) Mirrored
history network exhibiting vestigial preferences. (c) Null hypothesis of no
historical influence for both mimetic and mirrored history networks. The
upper row depicts isoclines of preferences in the principal-component space
given in Fig. 1. Lower row depicts hypothesized preferences varied in a single
dimension, time to half frequency, which loads highly on principal component
1 (PC1).
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evolutionary trajectory. Each network was represented as a
binary list of the weights between its neurons. Each network was
then assigned a fitness based on its ability to respond to the target
call without responding to noise. Networks contributed ‘‘off-
spring’’ to the next generation in proportion to their fitness.
Offspring were made to differ from parents by ‘‘mutating’’ a bit
in the list of weights, and by ‘‘recombining’’ segments of two
parent lists, providing variation that could again be subject to
selection.

The evolutionary trajectories of mimetic history networks
consisted of selecting populations of networks to recognize each
call in a sequence beginning at the root call reconstructed for the
P. pustulosus species group—including the out-group taxa P.
enesefae, P. ephippifer, and an undescribed species we refer to as
species A (36, 37). The mimetic trajectory ascends through each
subsequent node en route to the call of the túngara frog. The
ancestral states for mirrored history networks were constructed
by flipping the coordinates of the mimetic ancestors in the
acoustic space defined by a principal components analysis (Fig.
1) and solving for the original call variables (see ref. 31 for
details).

The target call switched to the next stimulus in the historical
sequence when the maximum fitness in a population (averaged
over five consecutive generations) exceeded 0.90. When this
criterion was met for the túngara call, the simulation ended and
the architecture of the best network in the population was
recorded. Except at high mutation rates or noise levels, this
proved to be a more stringent criterion for successful completion
than used previously (30, 31). For most simulations, the networks
were allowed to evolve until they met this criterion for the last
call in the sequence (the túngara frog call), or until a total of
20,000 generations elapsed. In the case of networks with popu-
lation sizes of greater than 100, the simulation was aborted after
2,000,000 networks had been evaluated: if the population size
was 500, the simulations were stopped at 4,000 generations;
populations of 1,000 after 2,000 generations. (In practice, only
one run from the large population sizes failed to meet this
criterion.) If the simulation ended without meeting the criteria
for all calls in the evolutionary trajectory, the results were not
used in our analysis.

The probability of mutating a given bit in a network was
0.0001, 0.0005, 0.001, 0.005, or 0.01. The probability of recom-
bination between a pair of networks was 0.00, 0.25, 0.50, 0.75, or
1.00. Population sizes varied among the values 10, 50, 100, 500,
and 1,000. And finally, ‘‘ambient noise’’ was constructed by
randomly permuting each coefficient in the input matrix with a
probability of 0.0, 0.02, 0.05, 0.10, or 0.25. When varying any one
parameter, the remaining parameters were left as reported in the
original studies (refs. 30 and 31; Table 1). Each manipulation was
run 10 times for each history type, for a total of 340 replicates
of the simulations. Table 1 depicts the precise combinations of
parameters used in each simulation, as well as a summary of
statistics on the outcomes of the various simulations.

Replication of Historical Influences on Neural Network Response
Biases. A neural network’s performance was defined by its ability
to predict the responses of female túngara frogs. To determine
whether previously reported historical influences (31) were
consistent across the many parameters reported here, we inves-
tigated the accuracy of current networks on the stimulus set used
in prior studies (30, 31). The set comprised 34 stimuli, including
the calls of extant species and estimates of ancestral states for the
clade. For a given stimulus, we defined the error of a set of
networks as the difference between the average network re-
sponse and the female response recorded in phonotaxis exper-
iments. We took the mean error across the standard 34 novel test
stimuli (30, 31) as a measure of network accuracy. We ran 340
simulations—170 of each history type—resulting in 17 combi-
nations of parameters (see Table 1). Of the 17 parametric
permutations, 14 resulted in networks of both history types
evolving to meet the criteria for successful completion of the
simulation (of these 280 simulations initiated, 279 ran to com-
pletion, see Table 1). For each of the 14 successful permutations,
we compared the average accuracies of networks with mimetic
and mirrored histories. We tested the null hypothesis that
mimetic and mirrored history networks are equally good at
predicting female responses.

Fig. 3. Vestigial preference functions in mimetic and mirrored history
networks. (a) Sonograms of calls with a time to half frequency (THHz) 1 SD
smaller than, equal to, or 1 SD greater than the túngara frog call (left to right).
Each sonogram is 600 ms long (x axis), and spans from 0 to 1.5 kHz (y axis). (b)
Mimetic history networks (filled circles) exhibit preferences for steep whines
resembling their ancestors. Responses of mirrored networks are shown in
open circles for comparison. (c) Mirrored history networks (gray circles) exhibit
preferences for shallow whines resembling their ancestors. Mimetic network
responses are plotted in open circles.
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Preference Tests. Females were collected while in amplexus from
Gamboa, Panama, between 1900 and 2100 h. Females were
separated from males, brought into the laboratory, and kept in
a dark cooler at room temperature (26°C) until 2200 h, at which
time testing began.

The test chamber was a sound resistant and light proof
chamber 1.8 m wide by 2.7 m in length. A speaker was placed at
either end, and an infrared camera was mounted on the ceiling
directly above the center of the arena. A pure tone was played
through the speakers, and the playback amplitude from each
speaker was set to 82 dB SPL (peak, re: 20 �Pa) at the center of
arena. The sound level was recalibrated between females. The
linoleum floor was sprayed periodically with water.

At the beginning of a test, the subject was removed from the
cooler and placed in the center of the test chamber beneath a small
funnel. The door was closed and the test stimuli were broadcast
from each of the two speakers. Stimuli were presented 180° out of
phase, with a period of 2 s. In the recognition tests, one stimulus was
the call of interest—one of the six ancestral or anti-ancestral
calls—and the second stimulus was white noise in an amplitude
envelope matching the call of the túngara frog. In the discrimination
tests, one stimulus was a call on the ancestral side of the transect,
the second was an anti-ancestral call with the same overall similarity
to the túngara frog call. Six stimuli were tested in recognition tests,
three ancestral�anti-ancestral pairs in discrimination tests. The
stimuli were counterbalanced so that each was broadcast from the
opposite speaker in alternating tests.

After 3 min acclimation, the funnel was lifted remotely.
Responses of females were observed on a video monitor located
outside the test chamber.

Females were scored as responding to a stimulus if they
approached within 10 cm of a speaker traversing a path that did
not follow the walls of the chamber. If females approached the
speaker by following the wall, this was scored as a positive
response if and only if the subject passed the speaker and then
returned to the speaker. A ring on the floor around the
perimeter of the funnel indicated the position of the female at
the start of the test. If the female did not leave this ring within
5 min of the onset of the trial, females were scored as not
responding. If a female passed the speaker by following the wall
but did not return to the speaker; if she stayed in one place for
more than 2 min; or if she spent 2 min climbing the walls of the
chamber, the subject was scored as not responding.

In the discrimination tests, only positive responses to one of
the two stimuli were recorded. Recognition tests were always
preceded and followed by tests examining female responses to a
whine�whine-chuck discrimination, a pair of stimuli known to
elicit reliable responses from females (43). If females did not
respond to either stimulus, the females were considered unre-
sponsive, and any intervening recognition tests were discarded.

Data Analysis. For each network, we summed responses to signals
along the ancestral side of the transect and compared this sum
to the responses of networks to stimuli along the anti-ancestral
side of the transect. For mimetic history networks, ancestral calls
were those calls with a steep whine shape—a short THHz. For
mirrored history networks, ancestral calls were those with a
shallow whine shape. The resulting 279 entries were analyzed
with a sign test to determine whether networks given the two
history types consistently exhibited asymmetric biases in favor of
calls resembling ancestral states.

Responses of females in recognition tests were first compared
with data gathered from a null test. When females were given a
choice between a silent speaker and a speaker playing white
noise, one female of twenty subjects approached the silent
speaker. Consequently, a response to no-response ratio of 1:19
was taken as the null hypothesis. By convention (36), we define
females as recognizing a stimulus if significantly more approach

Fig. 4. (a) Schematic depicting vestigial-preference hypothesis for túngara frog
females. Note that ancestral calls are defined as positive, and so lie on the right
of the túngara frog call. (b) Responses of female túngara frogs to ancestral and
anti-ancestral calls in recognition tests. Dashed line represents criterion for a
significantly recognized call. Horizontal lines indicate recognition responses that
were significantly different from one another (P � 0.01). (c) Responses of female
túngara frogs to ancestral and anti-ancestral calls in discrimination tests. Filled
bars represent responses toancestral stimuli;graybars responses toanti-ancestral
stimuli. Horizontal line depicts null hypothesis of no preference.
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it than approach a silent speaker (using a Fisher’s exact test with
� � 0.05, recognition occurs if 7 or more females approach the
stimulus). Responses between ancestral�anti-ancestral pairs pre-
sented in separate recognition tests were also compared with
Fisher’s exact test.

To compare female preferences observed in discrimination
tests, we compared the number of females that responded to the
ancestral and similarity-matched anti-ancestral calls by using a
two-tailed Fisher’s exact test, with a null expectation that 10 of
20 females would respond to ancestral calls. Females that did not
respond in the discrimination paradigm were excluded from
analysis.

Results
Parametric Influences on Network Responses. None of the param-
eters investigated (mutation probability, recombination proba-
bility, population size, ambient noise) significantly influenced
the overall error rates of the networks (Kendall Rank � adjusted
for ties, P � 0.05 after Bonferroni correction). Of the 14 sets of
simulations in which we were able to compare the error rates of
mimetic and mirrored history networks, 12 of the comparisons
(86%) demonstrated that mimetic history networks made
smaller errors than mirrored history networks (P � 0.02, sign
test). This result demonstrates that the predictive advantage
displayed by mimetic history networks is robust to manipulations
of evolutionary parameters.

Vestigial Preferences in Neural Networks. Tests of network re-
sponses revealed that 99 of 139 mimetic history networks
preferred calls with a steep, ancestor-like whine to those with a
shallow whine (P � 0.001, sign test). Similarly, 88 of 140 networks
given a mirrored history preferred ancestral calls with a shallow,
ancestor-like whine to those with a steep whine (P � 0.001, sign
test). Pooling these data indicates that 198 of 279 (P � 0.001, sign
test) networks preferred ancestral calls (Fig. 3 b and c).

Vestigial Preferences in Female Túngara Frogs. Female P. pustulosus
responded to all six of the ancestral and anti-ancestral calls

significantly more often than to the null stimulus (P � 0.05, Fig.
4b), indicating that all stimuli were recognized as acceptable
calls. Nevertheless, there is an overall asymmetry in the prefer-
ences of females, with a general bias toward the reconstructed
ancestral calls. The �0.5 ancestral call elicits significantly stron-
ger responses than the �0.5 anti-ancestral call (19�20 ancestral
vs. 11�20 anti-ancestral, Fisher’s exact test, P � 0.01), and the
�1.5 call is recognized significantly better than the �1.5 call
(18�20 ancestral vs. 9�20 anti-ancestral, Fisher’s exact test, P �
0.01). A similar trend holds for the �1.0-ancestor and �1.0-
anti-ancestor (15�20 ancestral vs. 11�20 anti-ancestral, Fisher’s
exact test, P � 0.05).

In discrimination tests, females exhibited very strong prefer-
ences for all calls on the ancestral portion of the transect
(�1.5��1.5 : 20�0, P � 0.01, sign test; �1.0��1.0: 18�2, P �
0.01; �0.5��0.5: 19�1, P � 0.01, Fig. 4c).

Discussion
We set out to test whether evolutionary history could distort the
patterns of generalization exhibited by receivers. Previous data
demonstrated that neural networks with distinct histories re-
spond differently to novel stimuli (30, 31). In our current study,
we found that neural networks selected to follow a trajectory
approximating that of the túngara frog showed emergent re-
sponse biases toward stimuli resembling ancestral calls. Mirrored
history networks exhibited analogous preferences for calls re-
sembling mirrored ancestors. The fact that the mimetic and
mirrored history networks display preferences for opposite
stimuli indicates that their asymmetric generalization gradients
are indeed attributable to history, rather than to any fundamen-
tal asymmetry required for the recognition of the túngara frog
call. Moreover, these historical differences were robust to
changes in simulation parameters, and did not require the
stimulus transect to pass through the true ancestors of either
history type. These data suggest that distortion of preference
functions in favor of ancestor-like stimuli should be detectable
even when there are errors in the estimation of ancestral states.

Table 1. Parametric manipulations of historical simulations

Simulation parameters Mimetic history networks Mirrored history networks

Most accur.Mut prob Rec prob Pop sz Noise Avg gen SE N Avg gen SE N

0.0001 0.50 100 0.02 6,540 1,245 10 8,151 969 10 Mir
0.0005 0.50 100 0.02 2,015 190 10 1,866 121 10 Mim
0.0010 0.50 100 0.02 1,515 280 10 1,423 126 10 Mim
0.0050 0.50 100 0.02 796 85 10 882 75 10 Mim
0.0100 0.50 100 0.02 2,205 391 10 6,634 2,039 10 Mim
0.0010 0.00 100 0.02 2,671 291 10 2,594 352 10 Mim
0.0010 0.25 100 0.02 1,383 138 10 1,430 108 10 Mim
0.0010 0.50 100 0.02 1,515 280 10 1,423 126 10 Mim
0.0010 0.75 100 0.02 1,165 157 10 1,389 167 10 Mim
0.0010 1.00 100 0.02 883 108 10 1,294 171 10 Mim
0.0010 0.50 10 0.02 20,000 0 0 20,000 0 0
0.0010 0.50 50 0.02 2,214 180 10 2,374 325 10 Mim
0.0010 0.50 100 0.02 1,515 280 10 1,423 126 10 Mim
0.0010 0.50 500 0.02 356 22 10 467 35 10 Mim
0.0010 0.50 1,000 0.02 566 271 9 409 51 10 Mim
0.0010 0.50 100 0.00 8,215 2,000 10 20,000 0 0
0.0010 0.50 100 0.02 1,515 280 10 1,423 126 10 Mim
0.0010 0.50 100 0.05 1,196 154 10 1,526 141 10 Mir
0.0010 0.50 100 0.10 2,761 650 10 3,869 692 10 Mim
0.0010 0.50 100 0.25 12,133 2,402 7 20,000 0 0

Ten simulations of each network type and parameter combination were initiated. N, the number of simulations completed. Most accur., the history type that
was best at predicting female responses. Mut prob, mutation probability; rec prob, recognition probability; pop sz, population size; avg gen, average number
of generations; SE, standard error; Mir, mirror; Mim, mimetic. Bold type denotes parameters that were varied.
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Female túngara frogs responded to all six of the test stimuli
significantly more often than to the null stimulus (white noise),
indicating that all six stimuli fall within the range of signal
variation females classify as acceptable conspecific mates. Nev-
ertheless, the recognition data indicate that females clearly
respond more often to ancestral than anti-ancestral calls. These
data demonstrate a response bias in the direction predicted by
the neural network data. Discrimination of equidistant pairs of
stimuli revealed that these preferences were very strong in all
stimulus pairs—the weakest preference was measured when 18
of 20 females approached the �1.5-ancestral call rather than the
�1.5-anti-ancestral call.

Prior investigations demonstrate that inter-specific mating pref-
erences can be predicted by phylogenetic relationships (e.g., refs.
44–46). The vestigial-preference hypothesis is consistent with these
findings, makes novel predictions, and avoids some of the short-
comings of earlier approaches to historical influences. By looking
for asymmetric preferences within a species, we eliminate con-
founding variation in species permissiveness or motivation—a
potential problem with comparisons across species. The hypothesis
also makes few assumptions about speciation mechanisms or the
persistence of ancestral taxa. Lastly, probing for vestigial prefer-
ences seems simpler and more generally applicable than multiple
regression methods for relating phylogeny to mate choice: Because
one would expect signal similarity and phylogenetic relatedness to
be correlated, co-linearity assumptions in multiple regression will
often be violated.

Although it is beyond the scope of the current investigation, we
anticipate more exhaustive studies documenting the distribution of
vestigial preferences across a clade. A comparison of vestigial
preferences between sister taxa could serve as a control analogous
to comparing mimetic and mirrored history networks. Parsimoni-
ous reconstructions of ancestral nodes typically fall between trait
values of extant sister taxa (47). As a result, vestigial preferences in
a species pair are predicted to lie in opposite directions relative to
their conspecific signals. Moreover, because this assay for vestigial
preferences emphasizes the relative proximity of stimuli to ancestral
states rather than absolute parameters of the ancestral signal, the
predicted asymmetries should be relatively robust to errors in
ancestral reconstructions.

Classic work in mathematical psychology posits that simple
generalization gradients may sum to produce a complex com-
posite gradient (48, 49); some ethologists have used this frame-

work to explain the emergence of receiver biases toward super-
normal or symmetric stimuli during learning and evolution (8,
19, 20, 23–25, 50, 51). A similar approach can be applied to the
data gathered in this study. Vestigial preferences may result from
the persistence of a generalization gradient centered at an
ancestral signal. Such preferences may decay over time, or if
ancestral recognition mechanisms contribute to contemporary
species recognition, may persist indefinitely. The first case
predicts a negative correlation between the elapsed time since a
speciation event and the strength of the vestigial preference. The
second assumes that vestigial preferences are maintained be-
cause of the pleiotropic effects of preference genes, and should
not depend on branch lengths. Analytic models of gradient
structure and signal evolution rates could provide quantitative
predictions about the distribution and strength of vestigial
preferences within a clade. Relating the degree of preference
asymmetry to branch lengths would provide strong tests of these
alternative hypotheses.

Like other patterns detected by the neural network models of
receiver evolution (e.g., peak-shift and directional intensity
preferences, reviewed in refs. 8, 24, and 25), the hypotheses that
emerge from our data can be examined and tested quite inde-
pendently of the simulations that brought the patterns to light.
In the current study, the neural network data led to novel
predictions regarding the behavior of females—predictions that
were verified experimentally. The data also suggest an avenue by
which neural networks can be used to develop mathematical
models of vestigial preferences for general use. These findings
highlight the potential for computational approaches to animal
decision-making to contribute to both experimental and math-
ematical analyses of behavioral evolution. By reuniting proxi-
mate and ultimate approaches to animal behavior, the compu-
tational methods of psychology and neuroscience promise to
renew and extend the ambitions of traditional ethology. The
integration of these tools with the methods of behavioral ecology
and population genetics will promote a deeper and more inte-
grative understanding of animal behavior and how it evolves.
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