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Animals often attend to only a few of the cues provided by the complex displays of conspecifics. We
suggest that thesc perceptual biases are influenced by mechanisms of signal recognition inherited from
antecedent species. We tested this hypothesis by manipulating the evolutionary history of artificial neural
networks, obscrving how the resulting networks respond to many novel stimuli and comparing these
responses to the behaviour of females in phonotaxis experiments. Networks with different evolutionary
histories proved equally capable of evolving to recognize the call of the tangara frog, Physalaemus
pustulosus, but exhibited distinct responses to novel stimuli. History influenced the ability of networks to
predict known responses of tingara frogs; network accuracy was determined by how closely the network
history approximated the hypothesized history of the tingara frog. Our findings emphasize the influence
of past selection pressures on current perceptual mechanisms, and demonstrate how neural network
models can be used to address behavioural questions that are intractable through traditional methods.
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1. INTRODUCTION

Animals are often able to recognize stimuli that display
only a few key features of a natural signal, or that lie well
outside the natural range of trait expression (Tinbergen
1951; Hauser 1996; Bradbury & Vehrencamp 1998). The
stimuli that evoke responses from receivers, for example
the postal truck that elicits threats from a male stickle-
back fish, reflect underlying perceptual mechanisms
involved in signal recognition (Tinbergen 1952; Krebs &
Dawkins 1984; Hauser 1996). These perceptual mechan-
isms result in biases toward particular signal forms, and
so delineate viable axes of signal variation. Data from
several taxa demonstrate that receiver biases often pre-
date the evolution of preferred signal forms (Basolo 1990;
Ryan 1990; recently reviewed in Endler & Basolo 1998;
Ryan 1998), and highlight the importance of biases in the
evolution of animal signals (see also West Eberhard 1979;
Guilford & Dawkins 1991; Endler 1992). Despite these
data, the evolutionary forces responsible for such biases
remain poorly understood.

Artificial network  models hold particular
promisc for investigations into the bases of receiver biases
{Enquist & Arak 1993, 1994; Johnstone 1994; Phelps &
Ryan 1998). These simulations are composed of inter-
acting neuron-like units that have the surprising and
convenient property of behaving like real nervous systems
both at fine levels of representation and at gross levels of
behaviour (Linsker 1986; McClelland & Rumelhart 1986;
Montague et al. 1995; Phelps & Ryan 1998). We recently
demonstrated that neural network models are capable of
evolving to recognize a mate-recognition signal, the call
of the tingara frog, and that the resulting networks are
adept at predicting female responses to novel stimuli
(Phelps & Ryan 1998).
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We used artificial neural networks to investigate how
the evolutionary history of a recciver influences its
current response properties. Although the idea of histor-
ical contingency is central to much of evolutionary
biology, it remains problematic because researchers rarcly
have the opportunity to alter historical events and observe
the outcome in descendant taxa (but see Travisano ef al.
1995). Artificial neural network models, and the wealth of
empirical data obtained from studies of the tangara frog
enabled us to manipulate the past history of the reccivers,
to observe the resulting response biases and to compare
how well the responses of networks with different histories
correspond to the responses of real femalcs.

We used a recurrent neural network architecture
(figure 1) known to be capable of reproducing the
response biases of female tingara frogs (Phelps & Ryan
1998). We trained the networks using a genetic algorithm
(Smith e/ al. 1994), selecting them to accept a stimulus
representing a conspecific signal and reject a stimulus
representing noise in a matching amplitude envelope.
(This discrimination between a conspecific stimulus and
a null stimulus corresponds to an operational definition of
‘recognition’ used in behavioural cxperiments (Ryan &
Rand 1995)) As in biological evolution, the target
‘conspecific’ signal changed over time. For networks
evolved through a ‘mimetic’ history, the scquence of
target calls approximates the historical trajectory of
tangara frog calls (Ryan & Rand 1995), beginning with
the reconstructed root call of the clade and ascending
through each subsequent node until reaching the call of
the tingara frog. In two control treatments, the random
and mirrored histories, a population of networks again
evolved through a series of ancestral target calls followed
by the call of the tangara frog. In cach of the control
historics, however, the ancestral sequence does not
approximate the history hypothesized for tingara frogs or
any other species. All of the neural networks were ulti-
mately selected to recognize the call of the tungara frog,
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Figure 1. Schematic of the recurrent neural network
architecture. The circles depict nodes, or neurons, in the
network. Neurons are arranged into four layers: the input
layer. ‘feature detector’ layer, ‘context’ layer and output
layer. Large arrows represent efferent connections in which
every neuron in one layer projects to every neuron in another.
The upper left hand corner of the figure depicts three
spectrograms, in which each pixel represents the relative
intensity of sound energy in a corresponding range of
frequencics (rows) and times (columns). A single column
from a spectrogram is presented to the network’s input layer
in each time-step. While the input-layer neurons calculate
their activities based on the current frequency vector, neurons
in the ‘feature detector’ layer calculate their activities based
on the activities of input-layer and ‘context’-layer neurons in
the preceding time-step. ‘Context’ and output neurons do the
same based on their inputs. The activity of the output neuron
at the end of 70 time-steps is defined as the network response
to a stimulus. Each time-step corresponds to ca. 11 ms of the
sound stimulus.

but differed in the signal recognition tasks performed by
ancestral populations.

If evolutionary history shapes receiver biases, and if
neural network models reflect the perceptual mechanisms
of real receivers, two predictions follow: first, networks
with different histories should show different responses to
test stimuli; and second, neural networks with an evolu-
tionary trajectory approximating the hypothesized
history of the tingara frog should be best at predicting
the responses of female tingara frogs to novel stimuli.

2. METHODS

(a) Newural network simulations

We used a recurrent neural network architecture (described
in Phelps & Ryan 1998) consisting of an input layer, a ‘feature
detector’ layer, a ‘context’ layer and an output neuron. Every
neuron receives input from a particular subset of neurons and
computes its own activity based on the weighted sum of the
activitics of its inputs. The network architecture is summarized
in figure 1.

The input layer consisted of 15 neurons, cach responding
selectively to a frequency range of 86.93 Hz. The total frequency
range spanned from 261 Hz to 1565 Hz. The ‘feature detector’
layer consisted of 12 neurons; each received input from every
neuron in the input layer and the ‘context’ layer, and sent
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efferent projections to each of the 12 neurons in the ‘context’
layer and to the output neuron. Each neuron of the ‘context’
layer received input from all of the neurons of the ‘feature
detector’ layer, weighted these inputs differently and possessed a
sigmoid activation function exactly like that of the neurons in
the rest of the network (unlike the simple recurrent network,
also known as an Elman network (Elman 1990)). Each neuron
also received input from a bias neuron (not shown in the sche-
matic), which was tonically active. (A tonically active bias
neuron is always maximally active—defined as an activity level
of 1.0. Neurons may weight the bias neuron input differently, so
the weighted sum of inputs is offset by a fixed amount thar is
encoded in the network’s chromosome, effectively allowing
neural thresholds to evolve.) The activation function and other
architectural details have been published elsewhere (Phelps &
Ryan 1998).

(b} Genetic algorithm

Each network was represented as a chromosome consisting of
3282 bits, representing 547 network weights, each coded as a
six-bit string. We evolved populations of networks using a modi-
fied version of Goldberg’s simple genctic algorithm in ¢ (Smith
et al. 1994) and roulette-wheel sclection. Networks were selected
for a capacity to discriminate calls from noise in the same
amplitude envelope, with the fitness function defined as

(C.— N /n40.01, (1)

n

i

1

where Fis fitness, C; is the response of the network to call ¢, N is
the response of the network to noise / and 7 is 3, the number of
stimuli tested for a single call. The parameter 0.0] represents a
small constant added to the fitness of each network to retard
premature convergence of the genetic algorithm (Phelps &
Ryan 1998).

If a chromosome successfully reproduced, mutation occurred
with a probability of 0.001 at any single bit. Chromosomes for
the daughter population were selected in pairs, and the prob-
ability of recombination between these chromosomes was 0.5.
Recombination was equally likely at any point along the chro-
mosome. Population sizes were always 100. A population of
networks was selected to recognize the target call until meeting
predetermined criteria (achieved when the fittest individual in
the population had a fitness of at least 0.90 and the population’s
avcrage fitness was at least 0.75) for two consecutive gencrations.
Meceting these criteria caused the target call to switch to the
next in the historical sequence. When the criteria were met for
the tangara frog call, the simulation was terminated and the
weights of the fittest individual network in the population were
recorded.

This procedure cnsures that networks recognizing tiungara
frog calls do so with mechanisms derived from those used to
recognize ancestral signals. While this enables one to control
ancestral recognition tasks, it entails a simplification: at the
transition from one target call to the next, receivers are selected
to recognize a novel signal that is fixed in the population.
Although similar selection pressures have been suggested to
emerge during founder events in Hawaiian Drosophila (Kaneshiro
1976, 1983), we do not suggest that female tingara frogs or their
ancestors have been selected to track major changes in species
recognition signals.



(c) Historical trajectories

Mimetic histories consisted of three ‘ancestral’ calls recon-
structed from the calls of the extant taxa as previously described
(Ryan & Rand 1995). Ryan & Rand (1999) estimated hypothe-
tical ancestral calls using a variety of additional models and
reconstruction methods. Their data indicate that various esti-
mates of ancestral call states led to the same conclusion: that
females appear to exhibit preferences that arc influenced by
evolutionary history. For simplicity, we used the reconstructions
originally reported in Ryan & Rand (1995).

We constructed a random history by randomly selecting three
‘ancestral’ calls from the extant taxa and reconstructed ancestral
calls of the Physalaemus pustulosus species group, which were then
followed by the call of the tangara frog. No two ancestral calls
in a single random history were the same. Although there was
substantial overlap in the calls of the 20 random histories, no
two of the 20 random histories were identical.

Selection to recognize novel traits can lead to a non-specific
increase in receiver permissiveness, and prior data indicate that
cven ahistorical networks selected to recognize the tingara frog
call tend to over-generalize (Phelps & Ryan 1998; Phelps 1999,
2001). The calls of the random histories were often more
different from one another than were the calls of the mimetic
history, implying that a poor predictive power of random
networks might be attributable to stronger selection for gross
permissiveness. (Differences in the diversity of target calls are
particularly apparent when one compares the coordinates of
cach call in the acoustic space defined by a principal compo-
(PCA)
illustrated in figure 2a) Consequently, comparisons between

nents analysis of the cxtant and ancestral calls,
random-history networks and mimetic-history networks (as well

as hetween these networks and the ahistorical networks
previously reported (Phelps & Ryan 1998)) confound two
attributes of evolutionary history: past selection for gross
increases in receiver permissiveness, which seems unlikely to
have an analogue in female tingara frogs; and the emergence of
current recognition mechanisms from ancestral mechanisms,
which is the focus of the current study.

'Io determine whether the external validity of network predic-
tions could be attributed to differences in ancestral recognition
mechanisms, we constructed a third history type that controlled

for the path length of the historical trajectory. The mirrored
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history was constructed by Hipping the coordinates of the
mimectic history in acoustic space to creatc something analogous
to a multidimensional mirror image of the mimetic history.
Although identical to the mimetic history in path length, the
ancestral calls that result do not correspond to any known or
hypothesized natural calls.

PCA is often used to find orthogonal axes of variation
corresponding to hidden, independent factors that underlie
variation imperfectly described by the variables arbitrarily
chosen for measurement by investigators (Stevens 1996). Since
the variables defined by a PCA lie at right angles to one another
and arc defined by patterns of natural variation, the Euclidean
distances between calls in PCA-space form biologically reason-
able estimatcs of dissimilarity.

We synthesized the mirrored history by performing a multi-
dimensional rotation of the mimetic history’s trajectory through
the acoustic space defined by a PCA for calls of this species
group (Ryan & Rand 1995). Twclve variables were used in this
analysis, resulting in 12 different component axes. For each axis,
we took the difference between the component score for each

mimetic ancestor and the component score for the tingara frog.
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Figure 2. Historical trajectories assigned to populations of
networks. (a) First two principal components for the various
history types. Reconstructions of the ancestral calls of the

P. pustulosus species group provided calls used for both
mimetic- and random-history groups. The mimetic history
(black circles) consisted of calls reconstructed for the three
direct ancestors of the tingara frog, followed by the tangara
frog call. The random history displayed (stippled circles) is
one of 20 that were used; the open circles display the
remaining extant and ‘ancestral’ members of the specics
group, from which additional random histories were
assembled. To control for differences in the overall ‘path
length’ of the historical trajectory, we constructed a mirrored
history (striped circles) by flipping the coordinates of the
mimetic history in acoustic space to create something analo-
gous to a multidimensional mirror image of the mimetic
history. (b) Sonograms of the calls comprising the three
history types. Each square is 600 ms long and spans from 0 to

1.5kHz.
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We reversed the sign of this difference and added it to the
component score for the tingara frog. This produced a new
component score for a ‘mirrored’ ancestor that was equidistant
from the tingara frog call but opposite the corresponding
‘mimetic’ ancestor in acoustic space. We were able to do this for
all but two of the component scores (flipping components 2 and
4 resulted in calls that were undefined, so the component scores
from the mimetic histories were used; because the axes defined
by the PCA were orthogonal, we were able to manipulate some
axes without manipulating others while preserving correlations
between call variables). The resulting component scores for each
call of the mirrored history were entered into the set of 12 equa-
tions defined by the PCA. We then solved for the original call
variables and synthesized the resulting calls. A graph of scores
for the first and second components provides a two-dimensional
depiction of what was executed mathematically in 12 dimensions
(hgure 2a).

It can be difficult to conceptualize rotations performed in a
12-dimensional space defined by axes (principal components)
resulting from a complex transformation. Although the original
call variables can interact with one another in complex ways,
attending to just those variables that load most heavily on the
first few components can make the procedure more intuitive.
Variables that describe how the call changes in time (e.g. time to
half frequency, call duration and amplitude rise time) load
heavily on the first component. Final call frequency and domi-
nant frequency load heavily on the second component and
initial frequency heavily on the third. Mirrored calls were
rotated about the first component: these ancestors have a morc
shallow frequency sweep (longer time to half frequency) than do
mimetic ancestors. In contrast, the seccond component was not
mirrored and both histories exhibit similar final frequencies.
Rotating about the third component resulted in mirrored ances-
tors that have consistently lower initial frequencies than their
corresponding mimetic ancestors. The relationship between
PCA-space and call structure is clearest when comparing the
sonograms for ancestors of the mirrored and mimetic histories:
the closer the ancestors of the two histories lie in the PCA-space,
the more similar the sonograms of the calls appear (figure 2,
the two-dimensional map is naturally an imperfect description
of 12-dimensional space). Although it is informative to know
precisely how the PCA-space corresponds to the original call
variables, for our purposes it is far more important that the
mirrored history precisely matches the call diversity of the
mimetic history but traverses a different region of call space.

(d) Network responses

We performed 20 replicates of cach history, resulting in 20
representative networks for the mimetic, random and mirrored
histories. We tested how well these networks responded to 34
different stimuli and compared their responses to those of
female tingara frogs. Network responses were defined by the
fitness function used in the genetic algorithm, in which C; is now
defined as the response to a test stimulus and N, is the response
to noisc in an amplitude envelope matching the test stimulus.

Fifteen test stimuli represented the cxtant and hypothetical
ancestral calls of the clade (figure 3) and 19 represented various
intermediatc states between extant species (see Phelps & Ryan
(1998) for sonograms of the 19 intermediate test stimuli). All
stimuli were descending frequency sweeps with initial frequen-
cies between 850 and 1250 Hz and final {requencies between 375
and 700 Hz. Duradons of the calls ranged from 200 to 750 ms.
Yor a given call, we used the average response of the networks to
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predict the average response of females in phonotaxis experi-
ments.

(e} Female responses

Females were allowed to acclimate for 3 min in the centre of a
testing chamber 3m wide by 3m long. A call stimulus was
presented every 2s from a specaker at one end of the arena; the
noise stimulus was presented from an opposite speaker 180° out
of phase with the first, so that each stimulus was presented alter-
nately from its respective speaker. Both stimuli were played at a
peak amplitude measured to be 82 dB sound pressure level (re:
20 pPa) in the centre of the arena.

Females approaching the test stimulus within 15 min of testing
were scored as responding; females approaching the noise
stimulus, or failing to approach ecither stimulus, were scored as
not responding. Each stimulus was tested on 20 females. The
proportion of females responding to a stimulus was recorded as
the average female response. Additional details of testing have
been published elsewhere (Wilczynski ef al. 1995).

(f) Statistical analysis

To compare the predictive power of the different network types,
we calculated the magnitude of the error (difference between
predicted and observed proportions of females responding) for
each of the 34 stimuli. We used two-tailed f-tests to determine
whether networks subject to mimetic histories had smaller
average crrors than random- or mirrored-history networks.

We also used a likelihood ratio test to compare the relative
support for each hypothesis. Specifically, we tested the hypoth-
esis that the mimetic-history networks arc better at predicting
female responses in a binomial choice test than networks with
either of the two control histories.

We interpret the response of a network as predicting the
probability that a female will approach the test stimulus in a
two-way phonotaxis experiment (Phelps & Ryan 1998). In this
case, the network response specifies a binomial distribution of
female responses to a given stimulus. Consequently, a network’s
responses can be regarded as a simple hypothesis (sensu Kendall
et al. 1991) of 34 dimensions, cach corresponding to one stimulus.
The likelihood of onc hypothesis is proportional to the prob-
ability of observing the results given the hypothesis. Because the
hypotheses are simple, the total support for onc hypothesis, H),
relative to another, Hy, is given by the log-likelihood ratio

2= Inlgf (1= p) /(= ) @)

i=1

where p; is the probability a female will approach a speaker in
responsc to stimulus 7, as predicted by H; p} is the probability
predicted by Hy r is the number of females approaching a
speaker; and n is the number of females tested (see Edwards
(1972) for similar tests). A A greater than 3 is equivalent to
rejecting H, at an « level of 0.05, and A greater than 4.6 is
equivalent to r¢jection at an « level of 0.01.

For descriptive purposes, we present correlations between the
average responses of networks of a given history and the average
responscs of females. We do not consider these correlations suitable

for hypothesis testing because of heteroscedasticity in the data.

3. RESULTS

Qualitatively, the responses of the mimetic-history

networks were more closcly correlated with the
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Figure 3. Evolution of networks along different historical trajectories. (a) ‘T'he left pancl represents the historical trajectory

of mimetic-history networks. The calls, presented as sonograms, are embedded in a phylogeny including the ancestral
reconstructions previously published for this species group (Ryan & Rand 1995). The centre panel illustrates changes in the
fitness of a population of networks over one representative run. Each black diamond corresponds to the fitness of the best network
in a population, cach grey diamond to the average fitness of the population. The right panel displays the average network
response (x-axis) and female response ( y-axis) to each of 34 test stimuli. (4) Evolution and responscs of neural networks provided
with a mirrored history. (¢) Evolution and responses of networks provided with a random history.

behaviours of real females ¢=0.56) than were the
responses of the two control histories (mirrored, r =0.32;
random, r=0.20). Two-tailed paired #-tests revealed that
the mimetic-history networks displayed significantly
smaller errors in predicting female responses than
nctworks with either a random or a mirrored history
(mimetic versus random, p < 0.05, 7= 34; mimetic versus
mirrored, p < 0.01, n=34).

Comparisons of the relative support for the various
hypotheses using likelihood ratioc methods produced
similar results. When mimetic-history networks (H,)
were compared to mirrored-history networks (H,), we
found 1=89.6 (4>4.6 analogous to p < 0.01). When
mimetic-history networks were compared to random-
history nectworks, we found A=169.2. All measures
indicate that mimetic-history networks were signifi-
cantly better at predicting the responses of females
than were networks produced by either of the control
histories.
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Interestingly, the transitions between calls in the
mimetic- and mirrored-history networks do not seem to
produce large drops in fitness, suggesting that generaliza-
tion between ancestral calls and the next node in the
trajectory occurs fairly easily (see centre column panels of
figure 3). Such seamless transitions make sense given that
males are restricted to calls that conform to the extant
biases of females. In the random history, such a fitness
drop was most pronounced when switching {rom the first
to the second call in the trajectory, but decreased there-
after. This presumably underlies the heightened permis-
siveness observed in networks that completed a random
history. The data in figure 3 illustrate how networks with
any of the history types over-generalize to novel stimuli
(most conspicuous in the responses of random-history
networks). Elsewhere we have combined these data with
responses of ahistoric networks and found that network
permissiveness is correlated with the diversity of evolu-
tionary history (Phelps 2001). Selection to recognize
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novel signals contributes to the heteroscedasticity in
response data, and may not reflect the behavioural
evolution of tangara frogs. Consequently, differences
between mimetic- and random-history networks, as well
as between thesc networks and the ahistoric networks
reported previously (Phelps & Ryan 1998), do not allow
one to disentangle the contributions of ancestral recog-
nition mechanisms from past selection for receiver
permissiveness. Mimetic- and mirrored-history networks,
however, cxhibit identical degrees of historical diversity
and equivalent levels of gross permissiveness (Phelps
2001), yet possess distinct biases. Critically, mimetic-
history networks are consistently better at predicting the
responses of female tangara frogs. This comparison
demonstrates that networks with mimetic histories are
more accurate predictors of female responses, and this is
likely  because recognition
mechanisms more closcly approximate those of female
tangara frogs.

most mimetic ancestral

4. DISCUSSION

We find that the strategies reccivers use to decode
signals result in incidental preferences for some stimuli
over others. These findings replicate results from prior
neural network studies (Enquist & Arak 1993, 1994, 1998;
Johnstone 1994; Phelps & Ryan 1998) and are consistent
with various hypotheses suggesting that preferences may
arise in the absence of current selection for signal assess-
ment (Endler & Basolo 1998; Ryan 1998). Critics of the
original applications of neural network models to animal
communication have argued that the network biases may
be artefacts of the particular architecture or training
methods used (Kirkpatrick & Rosenthal 1994; Cook
1995; Dawkins & Guilford 1995, Kamo et al. 1998). Our
data, however, demonstrate that networks with identical
architectures and training procedures may exhibit distinct
patterns of biases, shaped by evolutionary history. More-
over, despite obvious differences between females and
simple neural network models, the two are sufficiently
similar to make the networks useful predictors of female
preferences.

We found that networks given different histories exhib-
ited significant differences in their preferences for novel
stimuli. This is consistent with a number of behavioural
studics demonstrating that receivers respond to hypo-
thesized ancestral signals. When female tungara frogs, for
example, were tested with reconstructed ancestral calls of
the P, pustulosus species group, responses to the novel test
stimuli correlate with both acoustic and phylogenetic
proximity to the conspecific call (Ryan & Rand 1995,
1999; sce McLennan & Ryan (1997) for a related study of
preferences in swordtail fishes). Some species of Drosophila
exhibit asymmetrical responses to heterospecific signals in
which derived species respond better to the signals of
basal species than the reverse, suggesting preferences for
ancestral signals (Kaneshiro 1976, 1983). Such biases can
persist within descendant populations in which prefer-
ences lack an apparent function. Marler & Ryan (1997)
found that fish of the all-female gynogenetic molly species
Poecilia formosa exhibit a preference for large males appar-
ently inherited from females of their sexual ancestors,
P latipinna and P mexicana. Although these experiments
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consistently suggest historical influences, such correlative
data are unable to demonstrate causality. In contrast to
preceding and behavioural studies, we
demonstrate that biases change in response to direct
manipulations of ancestral signal-recognition tasks.

Because we used signals that represent the hypothe-
sized ancestral states for an extant specics, we were able
to compare the external validity of networks given
various histories. We found that networks with a history
most closely approximating that hypothesized for the
tingara frog are best at reproducing the response biases
ol real females. The fact that the predictions are sensitive
to evolutionary history indicates that the similarity
between female and network response biases is not simply
attributable to the suite of test stimuli used, the network
architecture or the training methods. Not only do these
networks demonstrate how history influences receiver
biases, but they predict the forms historical biases should
take in the tingara frog. Together these data add to the
growing weight of evidence indicating that historical
processes shape the design of communication systems.

We have yet to investigate how networks are executing
call recognition or how these mechanisms are being
shaped by evolutionary history. One simple hypothesis is
that neurons of the ‘feature detector’ and ‘context’ layers
combinc to form two resonating circuits: a delay circuit
activated by high-frequency inputs, and an AND circuit
activated by the convergence of low-frequency inputs and
the high-frequency delay. Such an arrangement would be
consistent with a description of call-recognition mechan-
isms put forward by Wilczynski et al. (1995) for female
tungara frogs. The evolution of new call-recognition
mechanisms could simply involve adding new frequency
inputs to these circuits. Networks evolving to recognize
the first call of the historical sequence would slowly
assemble such circuits, but could more rapidly evolve to
recognize subsequent calls. By this hypothesis, the
influence of network history could be attributed to the
persistence of frequency inputs used to recognize ancestral
calls. If the similarities between network and female
responses are to be taken literally, such circuits might be
found in the reciprocal connections of the torus semi-
cricularis and auditory thalamus. Convergence of a high-
frequency delay circuit with a low-frequency circuit could
result in call-selective neurons in cither structure (but
complex properties appear to be more common in the
auditory thalamus (Hall 1994)). It would be fascinating
to know whether call-responsive midbrain ncurons are
more sensitive to ancestral frequencies than one would
predict based on the tuning of the amphibian papilla.
Such investigations would be extremely novel and could
serve as a general model for the study of historical
influences on sensory systems.

The neural networks described here were not designed
to mimic architectural details of anuran auditory systems.
However, the ability of the network models to generate
hypotheses across multiple levels of analyses, ranging
from neural circuitry to phylogenetic influences on
animal communication, point to a major strength of this
approach. Hypotheses that are untestable using natural
populations may be readily investigated using neural
network models; the generality of the simulation results
can then be gauged using traditional behavioural assays

simulations
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and the most precise models can be used to direct
detailed studies of neuronal mechanisms. Although not
all systems will be well suited for such modelling, those
that are will gain an attractive degree of rigor and acces-
sibility. We hope that this approach will contribute to a
more thorough understanding of animal behaviour and
how it evolves.

The authors acknowledge A. S. Rand and W. Wilczynski for
input into study design and interpretation; M. Brauer, M.
Kirkpatrick and C. Pease for statistical critiques; J. Bull and
M. Greenfield for manuscript review; and J. Burgess for pro-
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Institute of Mental Health F31 MHII194 and a Smithsonian
Predoctoral Fellowship to S.M.P., and by a Guggenheim
Fellowship and National Science Foundation IBN 93 16185 to
M.J.R.
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