

TABLE 3.1 Som	Some resistance mutations		
Substance	Toxicity	Resistance mutation	
Bacteriophage T1	Infects and kills	Inactivates <i>tonB</i> outer membrane protein; phage cannot absorb	
Streptomycin	Binds to ribosomes; inhibits translation	Changes ribosomal protein S12 so that it no longer binds	
Chlorate	Converted to chlorite, which is toxic	Inactivates nitrate reductase, which converts chlorate to chlorite	
High concentrations of valine, no isoleucine	Feedback inhibits acetolactate synthetase; starves for isoleucine	Activates a valine-insensitive acetolactate synthetase	

Figure 3.3

TABLE 3.2	.E 3.2 The Luria and Delbrück experiment			
Experiment 1		Experiment 2		
Aliquot no.	No. of resistant bacteria	Culture no.	No. of resistant bacteria	
1	14	1	1	
2	15	2	0	
3	13	3	3	
4	21	4	0	
5	15	5	0	
6	14	6	5	
7	26	7	0	
8	16	8	5	
9	20	9	0	
10	13	10	6	
		11	107	
		12	0	
		13	0	
		14	0	
		15	1	
		16	0	
		17	0	
		18	64	
		19	0	
		20	35	

Figure 3.6

TABLE 3.3 The Newcombe experiment				
			No. of resist	ant colonies ^a
Incubation time (h)	No. of bacteria plated	Ending no. of bacteria	unsp	sp
5	5.1 × 10 ⁴	2.6×10^{8} (plate 3)	8 (plate 1)	13 (plate 2)
6	5.1×10^4	2.8×10^9 (plate 6)	49 (plate 4)	3,719 (plate 5)

^aunsp, unspread; sp, spread.

Figure 3.7

Figure 3.8

Figure 3.9

Guanine

Thymine (enol form)

Figure 3.12

Figure 3.14

Mutant

Figure 3.16

Figure 3.17

Box 3.2

Figure 3.18

Figure 3.19

Pathway

1 Galactose + ATP
$$\xrightarrow{}$$
 Galactose-1-PO₄ + ADP

2 Galactose-1-PO₄ + UDPglucose
$$\frac{}{GalT}$$
 UDPgalactose + glucose

Figure 3.20

B Mutant_A with nonsense mutation in gene X

Mutant_B with nonsense mutation in gene X and nonsense suppressor mutation in gene for tRNA₂^{Cln}

Gene X

Gene for tRNA₂^{Cln}

A T C

Hutant

tRNA

Charged

with

nonsense codon

Chromosome

Chromosome

Chromosome

TABLE 3.4	Some <i>E. coli</i> nonsense suppressor tRNAs			
Suppressor i	name	tRNA	Anticodon change	Suppressor type
supE		tRNA ^{Gln}	CU <u>G</u> -CUA	Amber
supF		tRNA ^{Tyr}	<u>G</u> UA-CUA	Amber
supB		tRNA ^{GIn}	UU <u>G</u> -UUA	Ochre/amber
supL		tRNA ^{Lys}	UU <u>U</u> -UUA	Ochre/amber

TABLE 3.5	Interpretation of complementation tests	
Test result		Possible explanations
x and y compleme	ent	Mutations are in different genes Intragenic complementation has occurred ^a
x and y do not complement		Mutations are in the same gene One of the mutations is dominant One of the mutations affects a regulatory site or is polar

^aSee the text for an explanation of intragenic complementation. This is a less likely explanation than the mutations being in different genes.

Figure 3.25

Figure 3.26

Figure 3.28

