Chapter 7

Control of Microorganisms by Physical and Chemical Agents

Definition of Frequently Used Terms

- sterilization
 - destruction or removal of all viable organisms
- disinfection
 - killing, inhibition, or removal of pathogenic organisms
 - disinfectants
 - agents, usually chemical, used for disinfection
 - usually used on inanimate objects

More definitions...

sanitization

 reduction of microbial population to levels deemed safe (based on public health standards)

antisepsis

- prevention of infection of living tissue by microorganisms
- antiseptics
 - chemical agents that kill or inhibit growth of microorganisms when applied to tissue

Antimicrobial agents

- agents that kill microorganisms or inhibit their growth
- -cidal agents kill
- -static agents inhibit growth

-cidal agents

-cide

- suffix indicating that agent kills
- germicide
 - kills pathogens and many nonpathogens but not necessarily endospores
- include bactericides, fungicides, algicides, and viricides

-static agents

-static

- suffix indicating that agent inhibits growth
- include bacteriostatic and fungistatic

The Pattern of Microbial Death

- microorganisms are not killed instantly
- population death usually occurs exponentially
- microorganisms are considered to be dead when they are unable to reproduce in conditions that normally support their reproduction

Conditions Influencing the Effectiveness of Antimicrobial Agent Activity

- population size
 - larger populations take longer to kill than smaller populations
- population composition
 - microorganisms differ markedly in their sensitivity to antimicrobial agents

More conditions...

- concentration or intensity of an antimicrobial agent
 - usually higher concentrations or intensities kill more rapidly
 - relationship is not linear
- duration of exposure
 longer exposure ⇒ more organisms killed

More conditions...

- temperature
 - higher temperatures usually increase amount of killing
- local environment
 - many factors (e.g., pH, viscosity and concentration of organic matter) can profoundly impact effectiveness