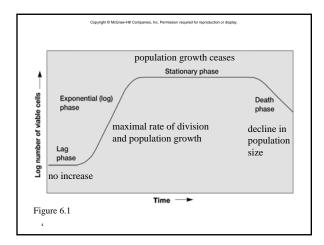
Chapter 6

Microbial Growth

Copyright @ McGraw-Hil Companies, Inc. Permission required for reproduction or display

Growth

• increase in cellular constituents that may result in:


Copyright © McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- increase in cell number
 - e.g., when microorganisms reproduce by budding or binary fission
- increase in cell size
 - e.g., coenocytic microorganisms have nuclear divisions that are not accompanied by cell divisions
- microbiologists usually study population growth rather than growth of individual cells

The Growth Curve

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

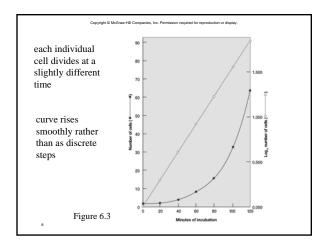
- observed when microorganisms are cultivated in batch culture
 - culture incubated in a closed vessel with a single batch of medium
- usually plotted as logarithm of cell number versus time
- usually has four distinct phases

Lag Phase

- cell synthesizing new components
 - e.g., to replenish spent materials
 - e.g., to adapt to new medium or other conditions

Copyright © McGraw-Hill Companies, Inc. Permission required for reproduction or display.

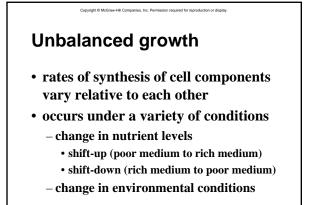
- varies in length
 - in some cases can be very short or even absent
- 5

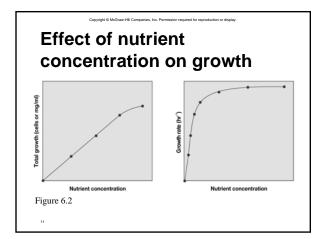

Exponential Phase

- · also called log phase
- rate of growth is constant
- population is most uniform in terms of chemical and physical properties during this phase

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Time ^a	Division Number	2"	Population $(N_0 \times 2'')$	$\log_{10}N_{\mu}$
0	0	$2^0 = 1$	1	0.000
20	1	$2^1 = 2$	2	0.301
40	2	$2^2 = 4$	4	0.602
60	3	$2^3 = 8$	8	0.903
80	4	$2^4 = 16$	16	1.204
100	5	$2^5 = 32$	32	1.505
120	6	$2^6 = 64$	64	1.806




Balanced growth

- during log phase, cells exhibit balanced growth
 - cellular constituents manufactured at constant rates relative to each other

Copyright @ McGraw-Hil Companies, Inc. Permission required for reproduction or display.

Stationary Phase

12

• total number of viable cells remains constant

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- may occur because metabolically active cells stop reproducing
- may occur because reproductive rate is balanced by death rate

Possible reasons for entry into stationary phase

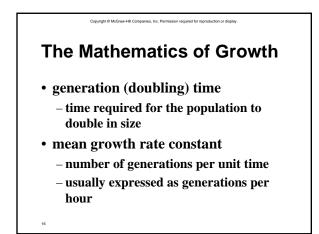
Copyright © McGraw-Hill Companies, Inc. Permission required for reproduction or display.

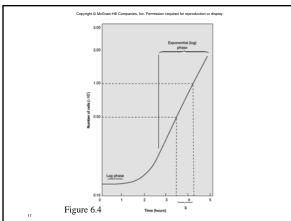
- nutrient limitation
- limited oxygen availability
- toxic waste accumulation
- critical population density reached

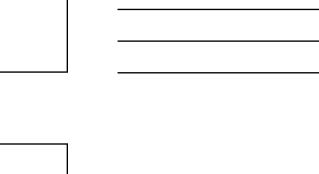
Starvation responses

Copyright © McGraw-Hill Companies, Inc. Permission required for reproduction or display.

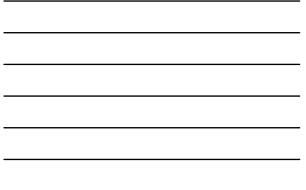
- morphological changes – e.g., endospore formation
- decrease in size, protoplast shrinkage, and nucleoid condensation
- production of starvation proteins
- long-term survival
- increased virulence
- 14


13

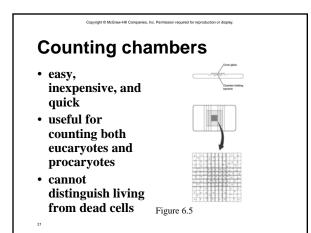

Death Phase


• cells dying, usually at exponential rate

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.


- death
 - irreversible loss of ability to reproduce
- in some cases, death rate slows due to accumulation of resistant cells

	Microorganisms				
Microorg	anism	Temperature (°C)	Generation Time (Hours)		
Bacteria					
	a natriegens	37	0.16		
	chia coli	40	0.35		
	subtilis	40	0.43		
	ococcus aureus	37	0.47		
	nonas aeruginosa	37	0.58		
	liam botalinam	37	0.58		
Rhodosp	pirillan rahran	25	4.6-5.3		
	na cylindrica	25	10.6		
	cterium tuberculosis	37	~12		
Trepone	ma pollidum	37	33		
Algae					
	smas quadricanda	25	5.9		
	la pyrenoidosa	25	7.75		
Asterior	sella formosa	20	9.6		
	gracilis	25	10.9		
Ceratian	m tripos	20	82.8		
Protozoa					
	mena geleii	24	2.2-4.2		
	unia donovani	26	10-12		
	cium caudatam	26	10.4		
	unoeba castellanii	30	11-12		
Giantia	Iamblia	37	18		
Fungi					
	unyces cerevisiae	30	2		
Monitin	ila fraa	25	30		


Measurement of Microbial Growth

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- can measure changes in number of cells in a population
- can measure changes in mass of population

Capyloge © Microsof Hi Comparede. In: Promission required for reproduction or deploy. Measurement of Cell Numbers

- Direct cell counts
 - counting chambers
 - $\, electronic \, \, counters$
 - on membrane filters
- Viable cell counts
 - plating methods
 - membrane filtration methods
- 2

Electronic counters

• microbial suspension forced through small orifice

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- movement of microbe through orifice impacts electric current that flows through orifice
- instances of disruption of current are counted

- Electronic counters...
- cannot distinguish living from dead cells

Copyright © McGraw-Hill Companies, Inc. Permission required for reproduction or display.

• quick and easy to use

23

24

• useful for large microorganisms and blood cells, but not procaryotes

Direct counts on membrane filters

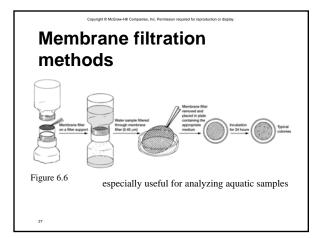
Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- cells filtered through special membrane that provides dark background for observing cells
- cells are stained with fluorescent dyes
- useful for counting bacteria
- with certain dyes, can distinguish living from dead cells

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display. **Plating methods** plate dilutions of • measure population on suitable number of solid medium viable cells ↓ • population size is expressed as colonies colony ↓ forming units calculate number of (CFU)

26

count number of

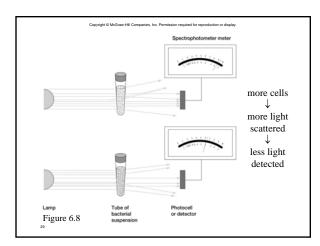

cells in population

Plating methods...

- simple and sensitive
- widely used for viable counts of microorganisms in food, water, and soil

Copyright © McGraw-Hill Companies, Inc. Permission required for reproduction or display.

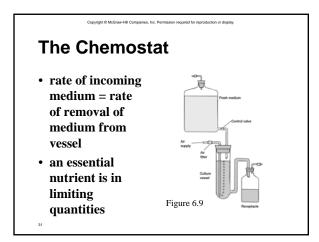
• inaccurate results obtained if cells clump together

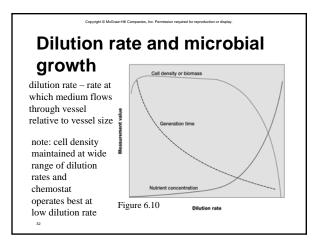


Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

• dry weight

 $-\ensuremath{$ time consuming and not very sensitive


- quantity of a particular cell constituent – e.g., protein, DNA, ATP, or chlorophyll
 - useful if amount of substance in each cell is constant
- turbidometric measures (light scattering) – quick, easy, and sensitive
- 28



Copyright & MacCase Hill Compared to & Permanent request for reproduction or depay. The Continuous Culture of Microorganisms

- growth in an open system
 - continual provision of nutrients
 - continual removal of wastes
- maintains cells in log phase at a constant biomass concentration for extended periods
- achieved using a continuous culture system
- 30

The Turbidostat

• regulates the flow rate of media through vessel to maintain a predetermined turbidity or cell density

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- dilution rate varies
- no limiting nutrient

33

• turbidostat operates best at high dilution rates

Importance of continuous culture methods

Copyright © McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- constant supply of cells in exponential phase growing at a known rate
- study of microbial growth at very low nutrient concentrations, close to those present in natural environment
- study of interactions of microbes under conditions resembling those in aquatic environments
- · food and industrial microbiology
- 34

Copylet Midnet H Corporate. In Permanent request to reproduct or depity. The Influence of Environmental Factors on Growth

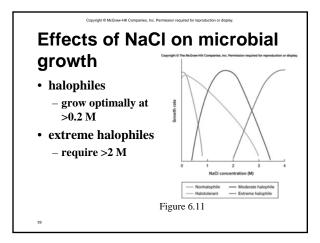
- most organisms grow in fairly moderate environmental conditions
- extremophiles
 - grow under harsh conditions that would kill most other organisms

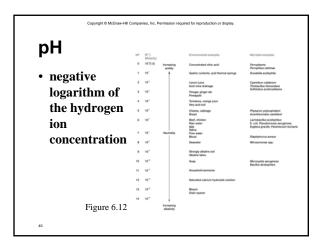
Solutes and Water Activity

Copyright © McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- water activity (a_w)
 - amount of water available to organisms
 - reduced by interaction with solute molecules (osmotic effect)
 - higher [solute] \Rightarrow lower a_w
 - reduced by adsorption to surfaces (matric effect)

Water Activity	Environment	Bacteria	Fungi	Algae
1.00-Pure water	Blood Vegetables, Plant wilt Segwater	Most gram-negative nonhalophiles		
0.95 0.90	Bread Ham	Most gram-positive rods Most cocci, Bacillus	Basidiomycetes Fasarium Mucus, Rhizopus Ascontycetous yeasts	Most algae
0.85	Salami	Stapityfococcas	Saccharomyces rounii (in salt)	
3.80	Preserves		Penicilliam	
0.75	Salt lakes Salted fish	Halobacterium Actinospora	Aspergillus	Dunaliella
0.70	Cereals.candy.dried fruit		Aspergillus	
1.60	Cereals.candy.dried trait		Saccharomyces rounii	
0.80	Chocolate		(in sugars)	
	Honey		Xeromices hisporus	
	Dried milk		surveyers repera	
155-DNA disordered				

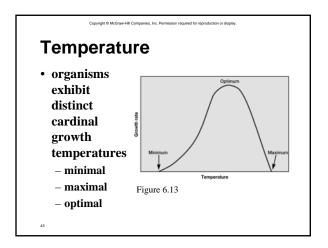



Osmotolerant organisms

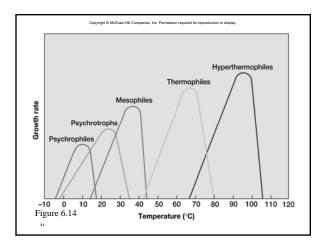
• grow over wide ranges of water activity

Copyright © McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- many use compatible solutes to increase their internal osmotic concentration
 - solutes that are compatible with metabolism and growth
- some have proteins and membranes that require high solute concentrations for stability and activity

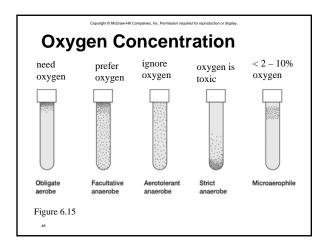

by the product of the produ

рΗ


• most acidophiles and alkalophiles maintain an internal pH near neutrality

Copyright © McGraw-Hill Companies, Inc. Permission required for reproduction or display

- some use proton/ion exchange mechanisms to do so
- some synthesize proteins that provide protection
 - e.g., acid-shock proteins
- many microorganisms change pH of their habitat by producing acidic or basic waste products
 - most media contain buffers to prevent growth inhibition
- 42


Adaptations of thermophiles

Copyright © McGraw-Hil Companies, Inc. Permission required for reproduction or display.

- protein structure stabilized by a variety of means
 - e.g., more H bonds
 - e.g., more proline
 - e.g., chaperones

- histone-like proteins stabilize DNA
- membrane stabilized by variety of means

 e.g., more saturated, more branched and higher molecular weight lipids
 - e.g., ether linkages (archaeal membranes)

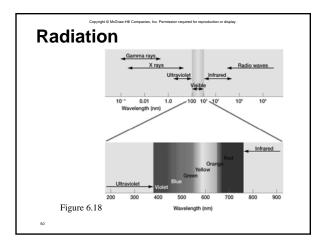
Basis of different oxygen sensitivities

Copyright © McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- oxygen easily reduced to toxic products
 - superoxide radical
 - hydrogen peroxide
 - hydroxyl radical
- aerobes produce protective enzymes
 - superoxide dismutase (SOD)
 - catalase

47

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display. Obligate aerobe Facultative Microaerophile Aerotolerant Strict anaerobe anaerobe anaerobe Enzyme content + SOD +/- Catalase (low levels) + SOD + Catalase + SOD + Catalase + SOD – Catalase – SOD – Catalase Figure 6.14 48



Pressure

- barotolerant organisms
 - adversely affected by increased pressure, but not as severely as nontolerant organisms

Copyright © McGraw-Hill Companies, Inc. Permission required for reproduction or display

- barophilic organisms
 - require or grow more rapidly in the presence of increased pressure
- 49

Radiation damage

- ionizing radiation
 - x rays and gamma rays
 - mutations \rightarrow death
 - disrupts chemical structure of many molecules, including DNA

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

• damage may be repaired by DNA repair mechanisms

Copyright & Michaev Hill Comparates, the Permission required for reproduction or display. Radiation damage... ultraviolet (UV) radiation mutations → death causes formation of thymine dimers in DNA DNA damage can be repaired by two mechanisms

- photoreactivation dimers split in presence of light
- dark reactivation dimers excised and replaced in absence of light
- 52

53

Radiation damage...

- visible light
 - at high intensities generates singlet oxygen $({}^{1}O_{2})$

Copyright © McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- powerful oxidizing agent
- carotenoid pigments
 - protect many light-exposed microorganisms from photooxidation

Microbial Growth in Natural Environments

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

• microbial environments are complex, constantly changing, and may expose a microorganism to overlapping gradients of nutrients and environmental factors

Growth Limitation by Environmental Factors

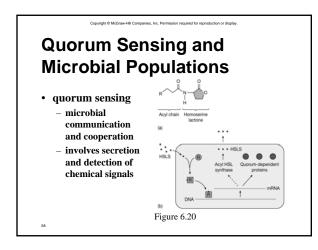
- Leibig's law of the minimum
 - total biomass of organism determined by nutrient present at lowest concentration

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Shelford's law of tolerance
 - above or below certain environmental limits, a microorganism will not grow, regardless of the nutrient supply

Responses to low nutrient levels

Copyright @ McGraw-Hill Companies. Inc. Permission required for reproduction or display.


- oligotrophic environments
- morphological changes to increase surface area and ability to absorb nutrients
- mechanisms to sequester certain nutrients

Counting Viable but Nonculturable Vegetative Procaryotes

 stressed microorganisms can temporarily lose ability to grow using normal cultivation methods

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

• microscopic and isotopic methods for counting viable but nonculturable cells have been developed

Processes sensitive to quorum sensing: gramnegative bacteria

Copyright @ McGraw-Hill Companies, Inc. Permise

- bioluminescence (Vibrio fischeri)
- synthesis and release of virulence factors (*Pseudomonas aeruginosa*)
- conjugation (Agrobacterium tumefaciens)
- antibiotic production (Erwinia carotovora, Pseudomonas aureofaciens)
- biofilm production (*P. aeruginosa*)
- 59

Quorum sensing: grampositive bacteria

- · often mediated by oligopeptide pheromone
- processes impacted by quorum sensing:
 - mating (Enterococcus faecalis)
 - transformation competence (*Streptococcus pneumoniae*)
 - sporulation (*Bacillus subtilis*)
 - production of virulence factors (*Staphylococcus aureus*)
 - development of aerial mycelia (Streptomyces griseus)
 - antibiotic production (S. griseus)