# Chapter 6

#### Microbial Growth

#### Growth

- increase in cellular constituents that may result in:
  - increase in cell number
    - e.g., when microorganisms reproduce by budding or binary fission
  - increase in cell size
    - e.g., coenocytic microorganisms have nuclear divisions that are not accompanied by cell divisions
- microbiologists usually study population growth rather than growth of individual cells

#### **The Growth Curve**

- observed when microorganisms are cultivated in batch culture
  - culture incubated in a closed vessel with a single batch of medium
- usually plotted as logarithm of cell number versus time
- usually has four distinct phases

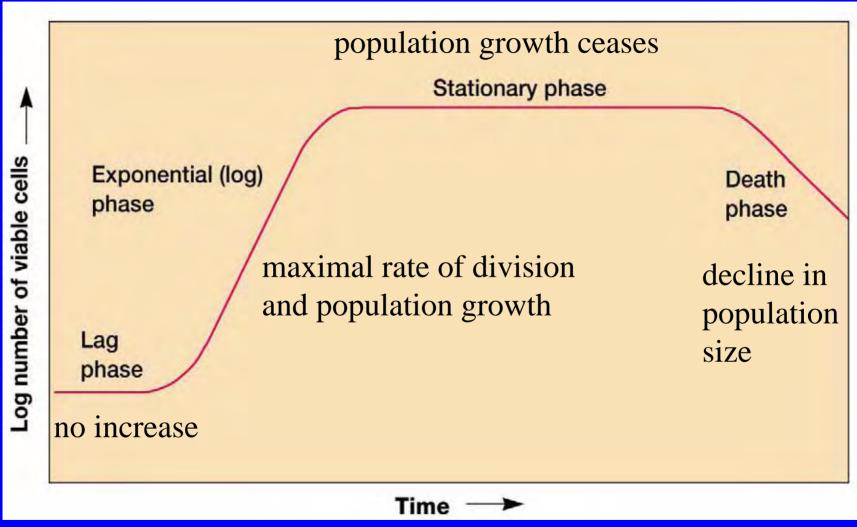



Figure 6.1

# Lag Phase

- cell synthesizing new components
  - -e.g., to replenish spent materials
  - e.g., to adapt to new medium or other conditions
- varies in length
  - in some cases can be very short or even absent

### **Exponential Phase**

- also called log phase
- rate of growth is constant
- population is most uniform in terms of chemical and physical properties during this phase

 Table 6.1
 An Example of Exponential Growth

| Time <sup>a</sup> | Division<br>Number | 2 <sup>n</sup> | Population $(N_0 \times 2^n)$ | $\log_{10} N_t$ |
|-------------------|--------------------|----------------|-------------------------------|-----------------|
| 0                 | 0                  | $2^0 = 1$      | 1                             | 0.000           |
| 20                | 1                  | $2^1 = 2$      | 2                             | 0.301           |
| 40                | 2                  | $2^2 = 4$      | 4                             | 0.602           |
| 60                | 3                  | $2^3 = 8$      | 8                             | 0.903           |
| 80                | 4                  | $2^4 = 16$     | 16                            | 1.204           |
| 100               | 5                  | $2^5 = 32$     | 32                            | 1.505           |
| 120               | 6                  | $2^6 = 64$     | 64                            | 1.806           |

<sup>&</sup>lt;sup>a</sup>The hypothetical culture begins with one cell having a 20-minute generation time.

cells are dividing and doubling in number at regular intervals

each individual cell divides at a slightly different time

curve rises smoothly rather than as discrete steps

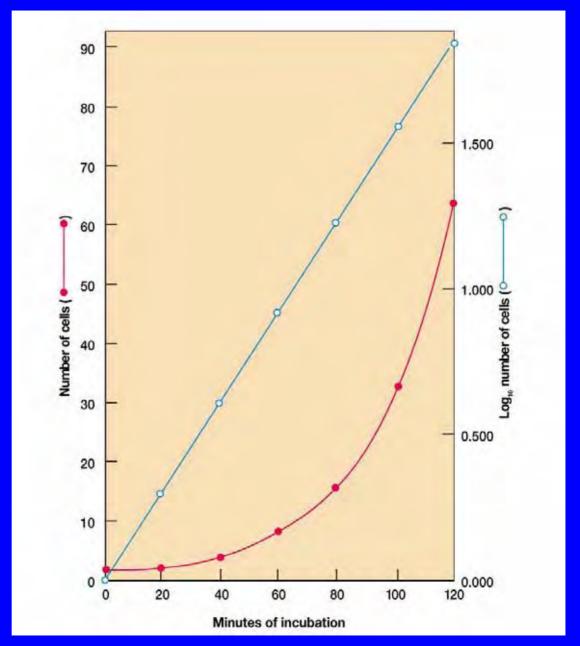



Figure 6.3

# **Balanced growth**

- during log phase, cells exhibit balanced growth
  - cellular constituents manufactured at constant rates relative to each other

# Unbalanced growth

- rates of synthesis of cell components vary relative to each other
- occurs under a variety of conditions
  - change in nutrient levels
    - shift-up (poor medium to rich medium)
    - shift-down (rich medium to poor medium)
  - change in environmental conditions

# Effect of nutrient concentration on growth

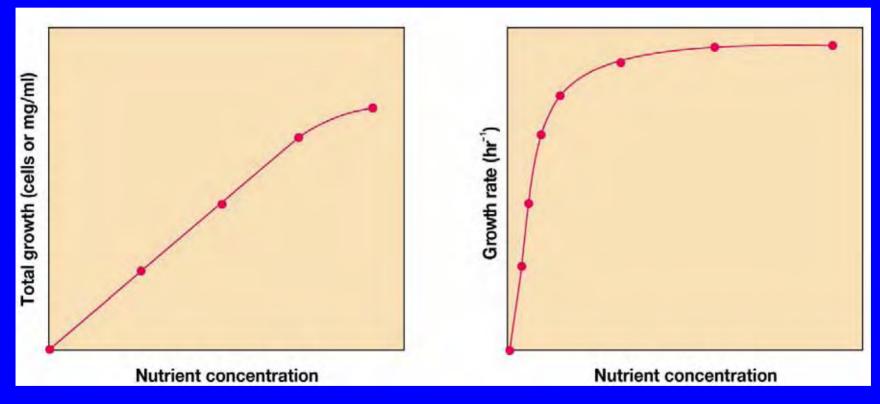



Figure 6.2

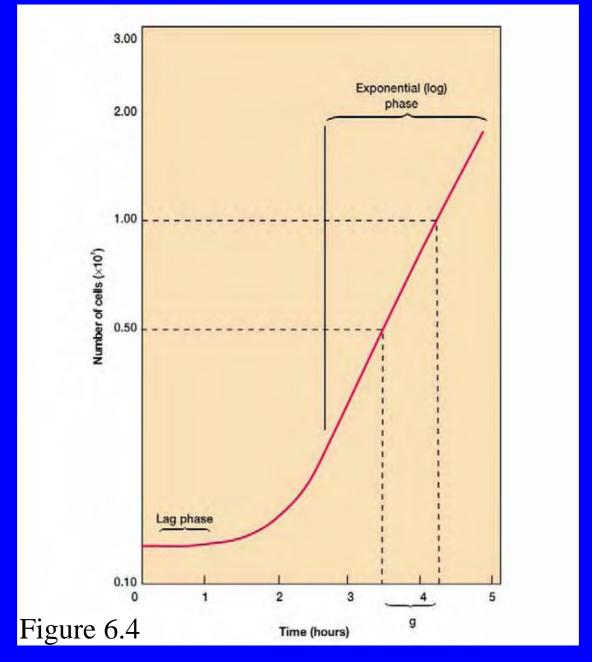
# Stationary Phase

- total number of viable cells remains constant
  - may occur because metabolically active cells stop reproducing
  - may occur because reproductive rate is balanced by death rate

# Possible reasons for entry into stationary phase

- nutrient limitation
- limited oxygen availability
- toxic waste accumulation
- critical population density reached

### Starvation responses


- morphological changes
  - e.g., endospore formation
- decrease in size, protoplast shrinkage, and nucleoid condensation
- production of starvation proteins
- long-term survival
- increased virulence

#### **Death Phase**

- cells dying, usually at exponential rate
- death
  - irreversible loss of ability to reproduce
- in some cases, death rate slows due to accumulation of resistant cells

#### The Mathematics of Growth

- generation (doubling) time
  - time required for the population to double in size
- mean growth rate constant
  - number of generations per unit time
  - usually expressed as generations per hour



**Table 6.2** Generation Times for Selected Microorganisms

| Microorganism              | Temperature<br>(°C) | Generation Time<br>(Hours) |
|----------------------------|---------------------|----------------------------|
| Bacteria                   |                     |                            |
| Beneckea natriegens        | 37                  | 0.16                       |
| Escherichia coli           | 40                  | 0.35                       |
| Bacillus subtilis          | 40                  | 0.43                       |
| Staphylococcus aureus      | 37                  | 0.47                       |
| Pseudomonas aeruginosa     | 37                  | 0.58                       |
| Clostridium botulinum      | 37                  | 0.58                       |
| Rhodospirillum rubrum      | 25                  | 4.6-5.3                    |
| Anabaena cylindrica        | 25                  | 10.6                       |
| Mycobacterium tuberculosis | 37                  | ≈12                        |
| Treponema pallidum         | 37                  | 33                         |
| Algae                      |                     |                            |
| Scenedesmus quadricauda    | 25                  | 5.9                        |
| Chlorella pyrenoidosa      | 25                  | 7.75                       |
| Asterionella formosa       | 20                  | 9.6                        |
| Euglena gracilis           | 25                  | 10.9                       |
| Ceratium tripos            | 20                  | 82.8                       |
| Protozoa                   |                     |                            |
| Tetrahymena geleii         | 24                  | 2.2-4.2                    |
| Leishmania donovani        | 26                  | 10-12                      |
| Paramecium caudatum        | 26                  | 10.4                       |
| Acanthamoeba castellanii   | 30                  | 11-12                      |
| Giardia lamblia            | 37                  | 18                         |
| Fungi                      |                     |                            |
| Saccharomyces cerevisiae   | 30                  | 2                          |
| Monilinia fraa             | 25                  | 30                         |

# Measurement of Microbial Growth

- can measure changes in number of cells in a population
- can measure changes in mass of population

### **Measurement of Cell Numbers**

- Direct cell counts
  - counting chambers
  - electronic counters
  - on membrane filters
- Viable cell counts
  - plating methods
  - membrane filtration methods

### **Counting chambers**

- easy, inexpensive, and quick
- useful for counting both eucaryotes and procaryotes
- cannot distinguish living from dead cells

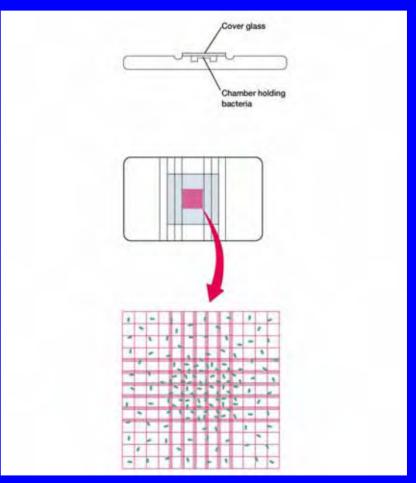



Figure 6.5

#### **Electronic counters**

- microbial suspension forced through small orifice
- movement of microbe through orifice impacts electric current that flows through orifice
- instances of disruption of current are counted

#### Electronic counters...

- cannot distinguish living from dead cells
- quick and easy to use
- useful for large microorganisms and blood cells, but not procaryotes

# Direct counts on membrane filters

- cells filtered through special membrane that provides dark background for observing cells
- cells are stained with fluorescent dyes
- useful for counting bacteria
- with certain dyes, can distinguish living from dead cells

### **Plating methods**

- measure number of viable cells
- population
   size is
   expressed as
   colony
   forming units
   (CFU)

plate dilutions of population on suitable solid medium





calculate number of cells in population

# Plating methods...

- simple and sensitive
- widely used for viable counts of microorganisms in food, water, and soil
- inaccurate results obtained if cells clump together

# Membrane filtration methods

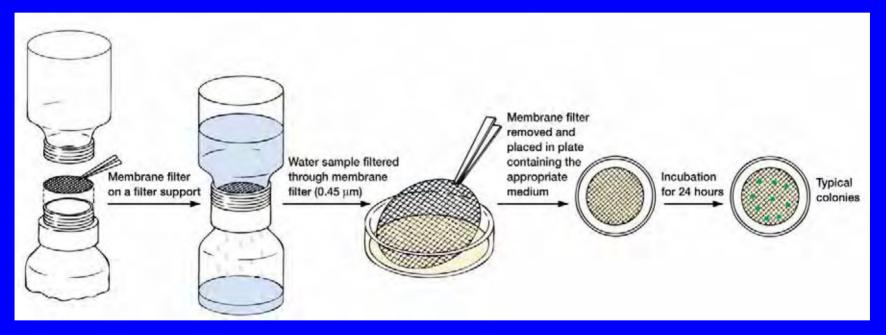
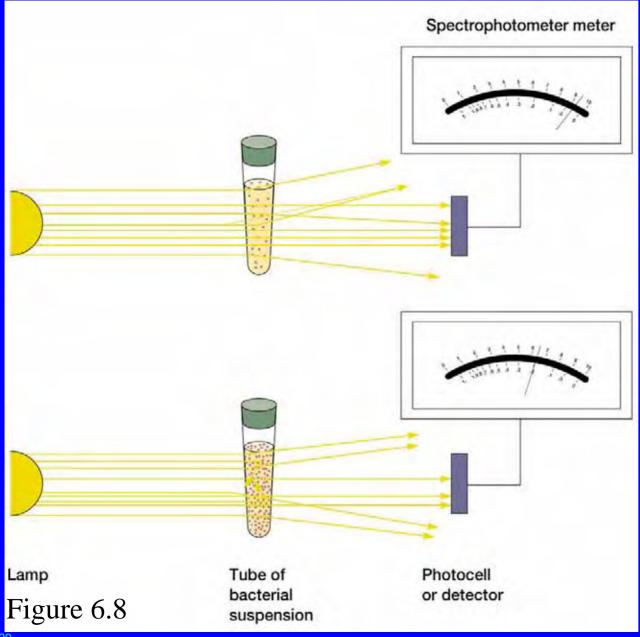




Figure 6.6

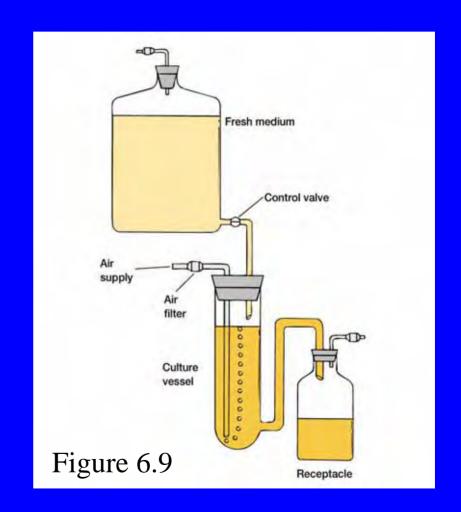
especially useful for analyzing aquatic samples

#### **Measurement of Cell Mass**

- dry weight
  - time consuming and not very sensitive
- quantity of a particular cell constituent
  - e.g., protein, DNA, ATP, or chlorophyll
  - useful if amount of substance in each cell is constant
- turbidometric measures (light scattering)
  - quick, easy, and sensitive



more cells

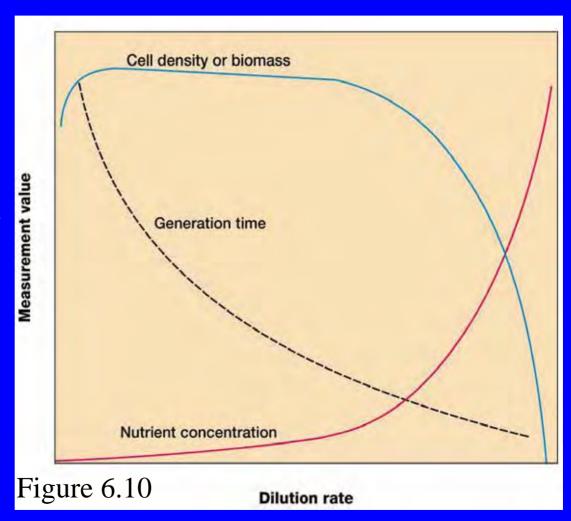

which is the second of the secon

# The Continuous Culture of Microorganisms

- growth in an open system
  - continual provision of nutrients
  - continual removal of wastes
- maintains cells in log phase at a constant biomass concentration for extended periods
- achieved using a continuous culture system

#### **The Chemostat**

- rate of incoming medium = rate of removal of medium from vessel
- an essential nutrient is in limiting quantities




# Dilution rate and microbial

growth

dilution rate – rate at which medium flows through vessel relative to vessel size

note: cell density maintained at wide range of dilution rates and chemostat operates best at low dilution rate



#### **The Turbidostat**

- regulates the flow rate of media through vessel to maintain a predetermined turbidity or cell density
- dilution rate varies
- no limiting nutrient
- turbidostat operates best at high dilution rates

# Importance of continuous culture methods

- constant supply of cells in exponential phase growing at a known rate
- study of microbial growth at very low nutrient concentrations, close to those present in natural environment
- study of interactions of microbes under conditions resembling those in aquatic environments
- food and industrial microbiology

# The Influence of Environmental Factors on Growth

- most organisms grow in fairly moderate environmental conditions
- extremophiles
  - grow under harsh conditions that would kill most other organisms

# Solutes and Water Activity

- water activity (a<sub>w</sub>)
  - amount of water available to organisms
  - reduced by interaction with solute molecules (osmotic effect)
    - **higher** [solute]  $\Rightarrow$  lower  $a_w$
  - reduced by adsorption to surfaces (matric effect)

Table 6.4 Approximate Lower a<sub>w</sub>Limits for Microbial Growth

| Water Activity      | Environment                                      | Bacteria                         | Fungi                                              | Algae      |
|---------------------|--------------------------------------------------|----------------------------------|----------------------------------------------------|------------|
| 1.00—Pure water     | Blood Vegetables, Plant wilt meat,fruit Seawater | Most gram-negative nonhalophiles |                                                    |            |
| 0.95                | Bread                                            | Most gram-positive rods          | Basidiomycetes                                     | Most algae |
| 0.90                | Ham                                              | Most cocci, Bacillus             | Fusarium<br>Mucor, Rhizopus<br>Ascomycetous yeasts |            |
| 0.85                | Salami                                           | Staphylococcus                   | Saccharomyces rouxii<br>(in salt)                  |            |
| 0.80                | Preserves                                        |                                  | Penicillium                                        |            |
| 0.75                | Salt lakes<br>Salted fish                        | Halobacterium<br>Actinospora     | Aspergillus                                        | Dunaliella |
| 0.70                | Cereals, candy, dried fruit                      |                                  | Aspergillus                                        |            |
| 0.60                | Chocolate                                        |                                  | Saccharomyces rouxii<br>(in sugars)                |            |
|                     | Honey Dried milk                                 |                                  | Xeromyces bisporus                                 |            |
| 0.55-DNA disordered |                                                  |                                  |                                                    |            |

#### Osmotolerant organisms

- grow over wide ranges of water activity
- many use compatible solutes to increase their internal osmotic concentration
  - solutes that are compatible with metabolism and growth
- some have proteins and membranes that require high solute concentrations for stability and activity

## Effects of NaCl on microbial

- growth
- halophiles
  - grow optimally at >0.2 M
- extreme halophiles
  - require >2 M

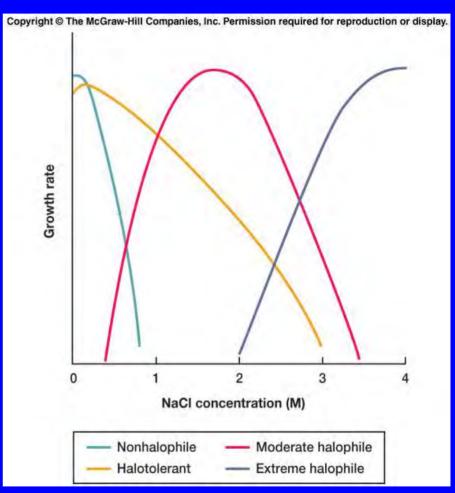



Figure 6.11

#### pH

negative
 logarithm of
 the hydrogen
 ion
 concentration



Figure 6.12

#### pH

- acidophiles
  - growth optimum between pH 0 and pH 5.5
- neutrophiles
  - growth optimum between pH 5.5 and pH 7
- alkalophiles
  - growth optimum between pH8.5 and pH 11.5

#### pΗ

- most acidophiles and alkalophiles maintain an internal pH near neutrality
  - some use proton/ion exchange mechanisms to do so
- some synthesize proteins that provide protection
  - e.g., acid-shock proteins
- many microorganisms change pH of their habitat by producing acidic or basic waste products
  - most media contain buffers to prevent growth inhibition

#### **Temperature**

- organisms
   exhibit
   distinct
   cardinal
   growth
   temperatures
  - minimal
  - maximal
  - optimal

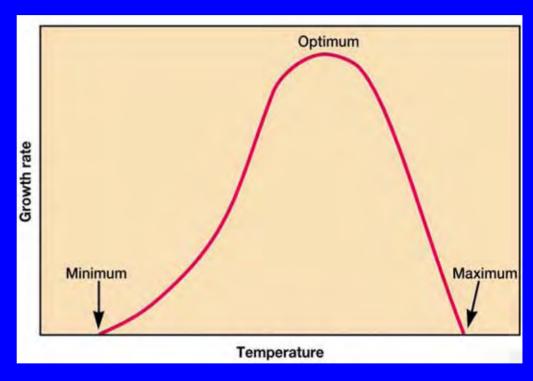
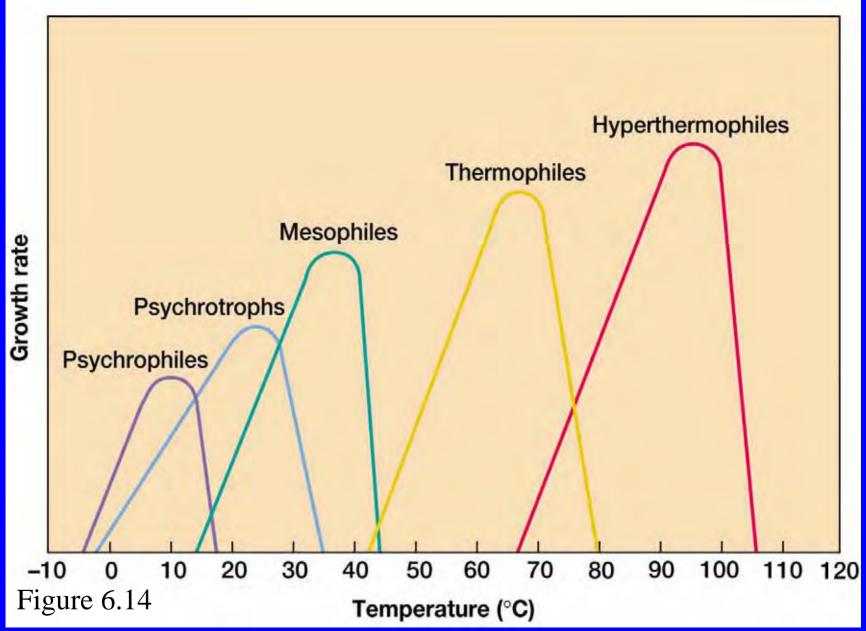




Figure 6.13



#### Adaptations of thermophiles

- protein structure stabilized by a variety of means
  - e.g., more H bonds
  - e.g., more proline
  - e.g., chaperones
- histone-like proteins stabilize DNA
- membrane stabilized by variety of means
  - e.g., more saturated, more branched and higher molecular weight lipids
  - e.g., ether linkages (archaeal membranes)

#### **Oxygen Concentration**

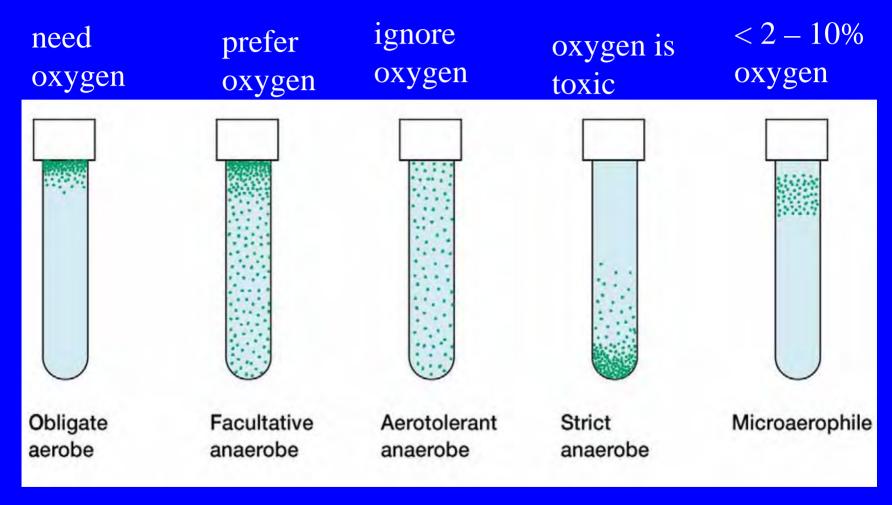



Figure 6.15

## Basis of different oxygen sensitivities

- oxygen easily reduced to toxic products
  - superoxide radical
  - hydrogen peroxide
  - hydroxyl radical
- aerobes produce protective enzymes
  - superoxide dismutase (SOD)
  - catalase

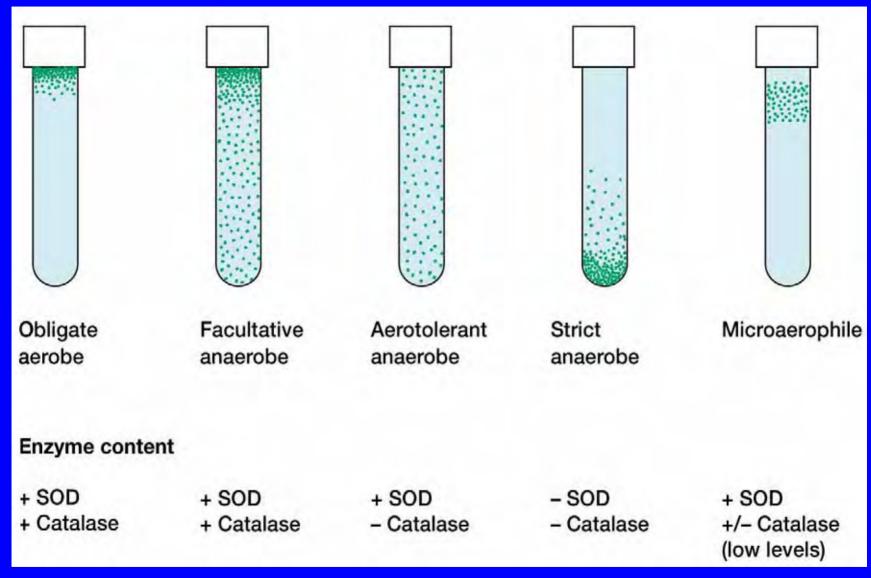



Figure 6.14

#### **Pressure**

- barotolerant organisms
  - adversely affected by increased pressure, but not as severely as nontolerant organisms
- barophilic organisms
  - require or grow more rapidly in the presence of increased pressure

#### Radiation

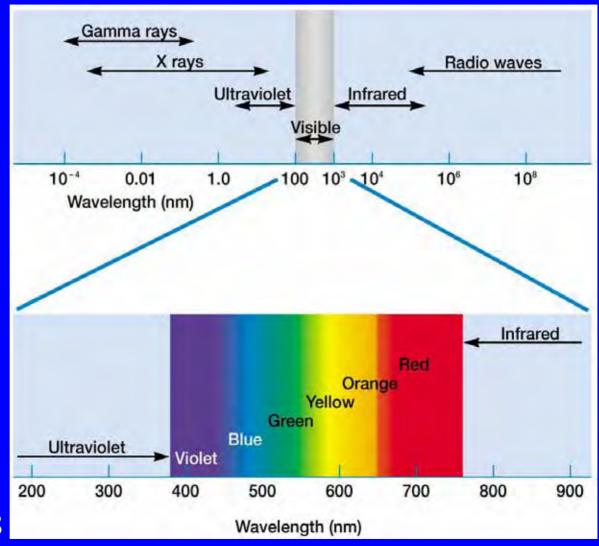



Figure 6.18

#### Radiation damage

- ionizing radiation
  - x rays and gamma rays
  - mutations  $\rightarrow$  death
  - disrupts chemical structure of many molecules, including DNA
    - damage may be repaired by DNA repair mechanisms

#### Radiation damage...

- ultraviolet (UV) radiation
  - mutations  $\rightarrow$  death
  - causes formation of thymine dimers in DNA
  - DNA damage can be repaired by two mechanisms
    - photoreactivation dimers split in presence of light
    - dark reactivation dimers excised and replaced in absence of light

#### Radiation damage...

- visible light
  - at high intensities generates singlet oxygen ( $^{1}O_{2}$ )
    - powerful oxidizing agent
  - carotenoid pigments
    - protect many light-exposed microorganisms from photooxidation

#### Microbial Growth in Natural Environments

 microbial environments are complex, constantly changing, and may expose a microorganism to overlapping gradients of nutrients and environmental factors

## **Growth Limitation by Environmental Factors**

- Leibig's law of the minimum
  - total biomass of organism determined by nutrient present at lowest concentration
- Shelford's law of tolerance
  - -above or below certain environmental limits, a microorganism will not grow, regardless of the nutrient supply

## Responses to low nutrient levels

- oligotrophic environments
- morphological changes to increase surface area and ability to absorb nutrients
- mechanisms to sequester certain nutrients

### Counting Viable but Nonculturable Vegetative Procaryotes

- stressed microorganisms can temporarily lose ability to grow using normal cultivation methods
- microscopic and isotopic methods for counting viable but nonculturable cells have been developed

# **Quorum Sensing and Microbial Populations**

#### quorum sensing

- microbialcommunicationand cooperation
- involves secretionand detection ofchemical signals

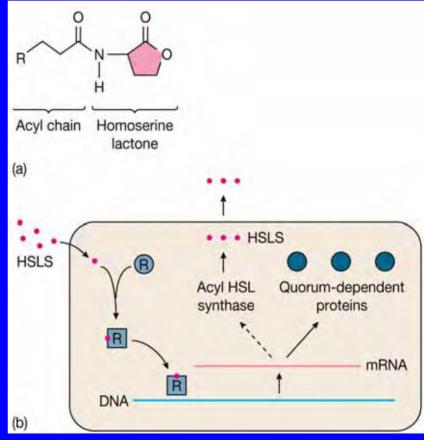



Figure 6.20

# Processes sensitive to quorum sensing: gram-negative bacteria

- bioluminescence (Vibrio fischeri)
- synthesis and release of virulence factors (Pseudomonas aeruginosa)
- conjugation (Agrobacterium tumefaciens)
- antibiotic production (Erwinia carotovora, Pseudomonas aureofaciens)
- biofilm production (P. aeruginosa)

#### Quorum sensing: grampositive bacteria

- often mediated by oligopeptide pheromone
- processes impacted by quorum sensing:
  - mating (Enterococcus faecalis)
  - transformation competence (Streptococcus pneumoniae)
  - sporulation (Bacillus subtilis)
  - production of virulence factors (Staphylococcus aureus)
  - development of aerial mycelia (Streptomyces griseus)
  - antibiotic production (S. griseus)