Chapter 3

Procaryotic Cell Structure and Function

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display

An Overview of Procaryotic Cell Structure

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- a wide variety of sizes, shapes, and cellular aggregation patterns
- simpler than eucaryotic cell structure
- unique structures not observed in eucaryotes

Size, Shape, and Arrangement

2

- cocci (s., coccus) spheres
 - diplococci (s., diplococcus) pairs

- -streptococci chains
- staphylococci grape-like clusters
- tetrads 4 cocci in a square
- sarcinae cubic configuration of 8 cocci

Size, Shape, and Arrangement

bacilli (s., bacillus) – rods
 – coccobacilli – very short rods
 – vibrios – curved rods

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

• mycelium – network of long, multinucleate filaments

Size, Shape, and Arrangement

• spirilla (s., spirillum) – rigid helices

- spirochetes flexible helices
- pleomorphic organisms that are variable in shape

Table 3.1	Functions of Procaryotic Structures
Plasma membrane	Selectively permeable barrier, mechanical boundary of cell, nutrient and waste transport, location of many metabolic processes (respiration, photosynthesis), detection of environmental cues for chemotaxis
Gas vacuole	Buoyancy for floating in aquatic environments
Ribosomes	Protein synthesis
Inclusion bodies	Storage of carbon, phosphate, and other substances
Nucleoid	Localization of genetic material (DNA)
Periplasmic space	Contains hydrolytic enzymes and binding proteins for nutrient processing and uptake
Cell wall	Gives bacteria shape and protection from lysis in dilute solutions
Capsules and slime	layers Resistance to phagocytosis, adherence to surfaces
Fimbriae and pili	Attachment to surfaces, bacterial mating
Flagella	Movement
Endospore	Survival under harsh environmental conditions

Procaryotic Cell Membranes

Convright @ The McGraw-Hill Companies. Inc. Permission requir

- membranes are an absolute requirement for all living organisms
- plasma membrane encompasses the cytoplasm
- some procaryotes also have internal membrane systems

The Plasma Membrane

- contains lipids and proteins
 - lipids usually form a bilayer
 - proteins are embedded in or associated with lipids

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

• highly organized, asymmetric, flexible, and dynamic

 polar ends

 interact with water

11

hydrophilic
nonpolar ends
insoluble in

- hydrophobic

water

12

Figure 3.5

Membrane proteins

• peripheral proteins

14

 loosely associated with the membrane and easily removed

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

 integral proteins

 embedded within the membrane and not easily removed

Archaeal membranes

- composed of unique lipids
- some have a monolayer structure instead of a bilayer structure

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Functions of the plasma membrane

Copyright @ The McGraw-Hill Companies. Inc. Permission required for reproduction or display.

- separation of cell from its environment
- selectively permeable barrier
 some molecules are allowed to pass into or out of the cell
 - transport systems aid in movement of molecules

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More functions...

- location of crucial metabolic processes
- detection of and response to chemicals in surroundings with the aid of special receptor molecules in the membrane

Other internal membrane systems

Copyright @ The McGraw-Hill Com

- complex in-foldings of the plasma membrane
 - observed in many photosynthetic bacteria and in procaryotes with high respiratory activity
 - may be aggregates of spherical vesicles, flattened vesicles, or tubular membranes

Copyright & The McGraw-Hill Companies. Inc. Permission required for reproduction or display. The Cytoplasmic Matrix

- substance between membrane and nucleoid
- packed with ribosomes and inclusion bodies
- highly organized with respect to protein location

Inclusion Bodies

• granules of organic or inorganic material that are stockpiled by the cell for future use

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- some are enclosed by a singlelayered membrane
 - membranes vary in composition
 - some made of proteins; others contain lipids

23

24

Organic inclusion bodies

- glycogen
 - polymer of glucose units
- poly-β-hydroxybutyrate (PHB)
 polymers of β-hydroxybutyrate

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

,

Organic inclusion bodies

- gas vacuoles
 - found in cyanobacteria and some other aquatic procaryotes
 - provide buoyancy
 - aggregates of hollow cylindrical structures called gas vesicles

Inorganic inclusion bodies

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- polyphosphate granules
 - also called volutin granules and metachromatic granules
 - linear polymers of phosphates
- sulfur granules
- magnetosomes

- contain iron in the form of magnetite
- used to orient cells in magnetic fields

Ribosomes

• complex structures consisting of protein and RNA

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- sites of protein synthesis
- smaller than eucaryotic ribosomes
 - procaryotic ribosomes $\Rightarrow 70S$
 - eucaryotic ribosomes $\Rightarrow 80S$
 - S = Svedburg unit

The procaryotic chromosome

• a closed circular, double-stranded DNA molecule

- looped and coiled extensively
- nucleoid proteins probably aid in folding
 - nucleoid proteins differ from histones

Unusual nucleoids

- some procaryotes have > 1 chromosome
- some procaryotes have chromosomes composed of linear double-stranded DNA

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- a few genera have membranedelimited nucleoids
- 3

38

Plasmids

• usually small, closed circular DNA molecules

- exist and replicate independently of chromosome
- not required for growth and reproduction
- may carry genes that confer selective advantage (e.g., drug resistance)

Functions of cell wall

• provides characteristic shape to cell

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- protects the cell from osmotic lysis
- may also contribute to pathogenicity
- may also protect cell from toxic substances

Cell walls of Bacteria

• Bacteria are divided into two major groups based on the response to Gram-stain procedure.

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- gram-positive bacteria stain purple

- gram-negative bacteria stain pink
- staining reaction due to cell wall structure

Periplasmic space

• gap between plasma membrane and cell wall (gram-positive bacteria) or between plasma membrane and outer membrane (gram-negative bacteria)

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- periplasm

 substance that occupies periplasmic space
- 43

Periplasmic enzymes

• found in periplasm of gram-negative bacteria

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- some of their functions
 - nutrient acquisition
 - electron transport
 - peptidoglycan synthesis
 - modification of toxic compounds
- 44

Exoenzymes

• secreted by gram-positive bacteria

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

• perform many of the same functions that periplasmic enzymes do for gram-negative bacteria

• important component of both grampositive and gram-negative bacteria

- polysaccharide formed from peptidoglycan subunits
- two alternating sugars form backbone
 - -N-acetylglucosamine
 - -N-acetylmuramic acid
- .

- composed primarily of peptidoglycan
- may also contain large amounts of teichoic acids
- some gram-positive bacteria have layer of proteins on surface of peptidoglycan

50

Figure 3.20

Gram-Negative Cell Walls

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- consist of a thin layer of peptidoglycan surrounded by an outer membrane
- outer membrane composed of lipids, lipoproteins, and lipopolysaccharide (LPS)
- no teichoic acids

Important connections

• Braun's lipoproteins connect outer membrane to peptidoglycan

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Adhesion sites
 - sites of direct contact (possibly true membrane fusions) between plasma membrane and outer membrane
 - substances may move directly into cell through adhesion sites

ction or display.

5

Lipopolysaccharides (LPSs)

Copyright @ The McGraw-Hill Companies, Inc. Perm

- consist of three parts
 - -lipid A
 - core polysaccharide
 - O side chain (O antigen)

Importance of LPS

• protection from host defenses (O antigen)

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display

- contributes to negative charge on cell surface (core polysaccharide)
- helps stabilize outer membrane structure (lipid A)
- can act as an exotoxin (lipid A)
- 58

Other characteristics of outer membrane

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- more permeable than plasma membrane due to presence of porin proteins and transporter proteins
 - porin proteins form channels through which small molecules (600-700 daltons) can pass

The Mechanism of Gram Staining

• thought to involve constriction of the thick peptidoglycan layer of grampositive cells

- constriction prevents loss of crystal violet during decolorization step
- thinner peptidoglycan layer of gramnegative bacteria does not prevent loss of crystal violet

The Cell Wall and Osmotic Protection

Conviolt © The McGraw-Hill Companies. Inc. Permission required for reproduction or display

- osmosis
 - movement of water across selectively permeable membrane from dilute solutions to more concentrated solutions
- cells are often in hypotonic solutions [solute]_{outside cell} < [solute]_{inside cell}

The Cell Wall and Osmotic Protection

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- osmotic lysis
 - can occur when cells are in hypotonic solutions
 - movement of water into cell causes swelling and lysis due to osmotic pressure
- cell wall protects against osmotic lysis

Cell walls do not protect against plasmolysis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- plasmolysis
 - occurs when cells are in hypertonic solutions
 - [solute]_{outside cell} > [solute]_{inside cell}
 - water moves out of cell causing cytoplasm to shrivel and pull away from cell wall

e

Practical importance of plasmolysis and osmotic lysis

mies, Inc. Permission required for reproduction or display.

- plasmolysis
 - useful in food preservation
 - e.g., dried foods and jellies
- osmotic lysis
 - basis of lysozyme and penicillin action
- 6

Archaeal cell walls

- lack peptidoglycan
- can be composed of proteins, glycoproteins, or polysaccharides

Protein Secretion in Procaryotes

- numerous protein secretion pathways have been identified
- four major pathways are:
 - $-\,Sec\text{-}dependent\ pathway$
 - type II pathway
 - type I (ABC) protein secretion pathway
 - type III protein secretion pathway
- 6

68

Sec-Dependent Pathway

- also called general secretion pathway
- translocates proteins from cytoplasm across or into plasma membrane

- secreted proteins synthesized as preproteins having amino-terminal signal peptide
 - signal peptide delays protein folding
 - chaperone proteins keep preproteins unfolded
- translocon transfers protein and removes signal peptide

Type II Protein Secretion

Pathway

- transports proteins from periplasmic across outer membrane
- observed in some gram-negative bacteria, including some pathogens
- complex systems consisting of up to 12-14 proteins
 - most are integral membrane proteins

Type I Protein Secretion Pathway

Convisite C The McGraw-Mill Companies Inc. Remainsion required for rec

- also called ABC protein secretion pathway
- transports proteins from cytoplasm across both plasma membrane and outer membrane
- secreted proteins have C-terminal secretion signals
- proteins that comprise type I systems form channels through membranes
- translocation driven by both ATP hydrolysis and proton motive force

Type III Protein Secretion Pathway

- secretes virulence factors of gramnegative bacteria from cytoplasm, across both plasma membrane and outer membrane, and into host cell
- some type III secretion machinery is needle-shaped
 - secreted proteins thought to move through a translocation channel

Capsules, Slime Layers, and S-Layers

Conviolt © The McGraw-Hill Companies. Inc. Permission required for reproduction or display

• layers of material lying outside the cell wall

- capsules

- usually composed of polysaccharides
- well organized and not easily removed from cell

- slime layers

- similar to capsules except diffuse, unorganized and easily removed
- 76

Capsules, Slime Layers, and S-Layers

- glycocalyx
 - network of polysaccharides extending from the surface of the cell

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

 a capsule or slime layer composed of polysaccharides can also be referred to as a glycocalyx

Capsules, Slime Layers, and S-Layers

- S-layers
 - regularly structured layers of protein or glycoprotein

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

 common among Archaea, where they may be the only structure outside the plasma membrane

Functions of capsules, slime layers, and S-layers

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- protection from host defenses (e.g., phagocytosis)
- protection from harsh environmental conditions (e.g., desiccation)
- attachment to surfaces

Copyright © The McGraw-HI Companies, Inc. Permission required for reprediction or display.

- protection from viral infection or predation by bacteria
- protection from chemicals in environment (e.g., detergents)
- motility of gliding bacteria
- protection against osmotic stress

Patterns of arrangement

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- monotrichous one flagellum
- polar flagellum flagellum at end of cell
- amphitrichous one flagellum at each end of cell
- lophotrichous cluster of flagella at one or both ends
- peritrichous spread over entire surface of cell

The filament

87

- hollow, rigid cylinder
- composed of the protein flagellin

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

• some procaryotes have a sheath around filament

Flagellar Synthesis

- an example of self-assembly
- complex process involving many genes and gene products

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- new molecules of flagellin are transported through the hollow filament
- growth is from tip, not base

The Mechanism of Flagellar Movement

sion required for reproduction or display

• flagellum rotates like a propeller

Copyright @ The McGraw-Hill Companies, Inc. Perm

- in general, counterclockwise rotation causes forward motion (run)
- in general, clockwise rotation disrupts run causing a tumble (twiddle)

Other types of motility

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- spirochetes
 - axial filaments cause flexing and spinning movement
- gliding motility
 - cells coast along solid surfaces
 - no visible motility structure has been identified
- 94

Chemotaxis

- movement towards a chemical attractant or away from a chemical repellant
- concentrations of chemoattractants and chemorepellants detected by chemoreceptors on surfaces of cells

Travel away from repellant

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

• involves similar but opposite responses

Mechanism of chemotaxis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- complex but rapid
 - responses occur in less than 20 milliseconds
- involves conformational changes in proteins
- also involves methylation or phosphorylation of proteins

~

The Bacterial Endospore

- formed by some bacteria
- dormant
- resistant to numerous environmental conditions
 - heat
 - radiation
 - chemicals
 - desiccation
- 100

What makes an endospore so resistant?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- calcium (complexed with dipicolinic acid)
- acid-soluble, DNA-binding proteins
- dehydrated core
- spore coat
- DNA repair enzymes
- 10

104

Sporogenesis

• normally commences when growth ceases because of lack of nutrients

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

• complex multistage process

Transformation of endospore into vegetative cell

 complex, multistage process

Figure 3.45

Stages in transformation

- activation
 - prepares spores for germination
 - often results from treatments like heating
- germination
 - spore swelling
 - rupture of absorption of spore coat
 - loss of resistance
 - increased metabolic activity
- outgrowth
 - emergence of vegetative cell