Chapter 15

Microbial Genomics

Genomics

- study of molecular organization of genomes, their information content, and gene products they encode
- divided into three areas
 - structural genomics
 - physical nature of genomes
 - functional genomics
 - how genome functions
 - comparative genomics
 - compares genomes of different organisms

Determining DNA Sequences

- Sanger Method
 - uses dideoxynucleoside triphosphates (ddNTP)
- automated systems
 - use dideoxynucleotides labeled with fluorescent dyes

Dideoxyadenosine triphosphate

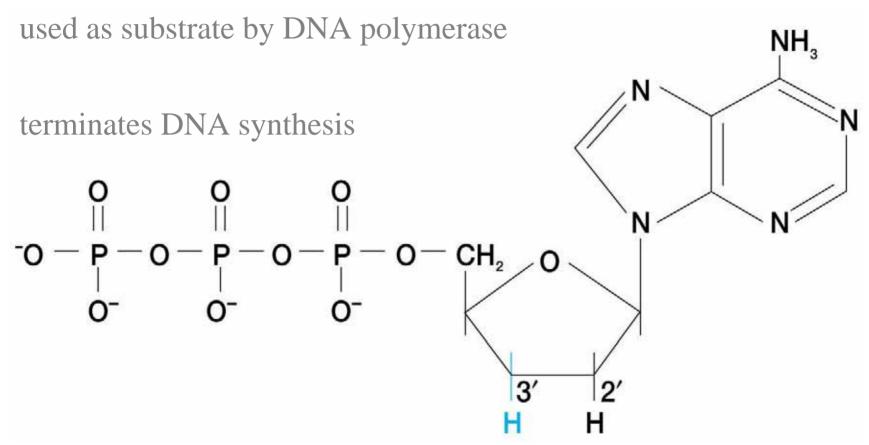
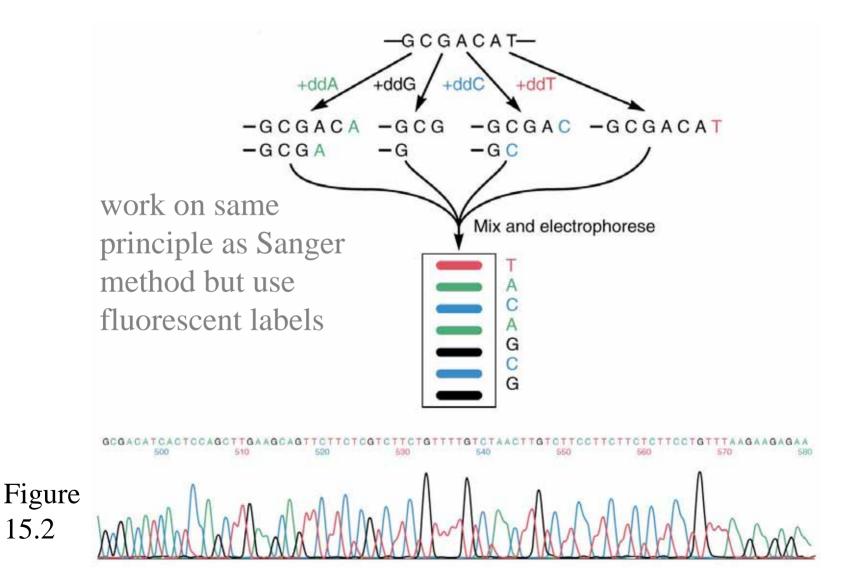
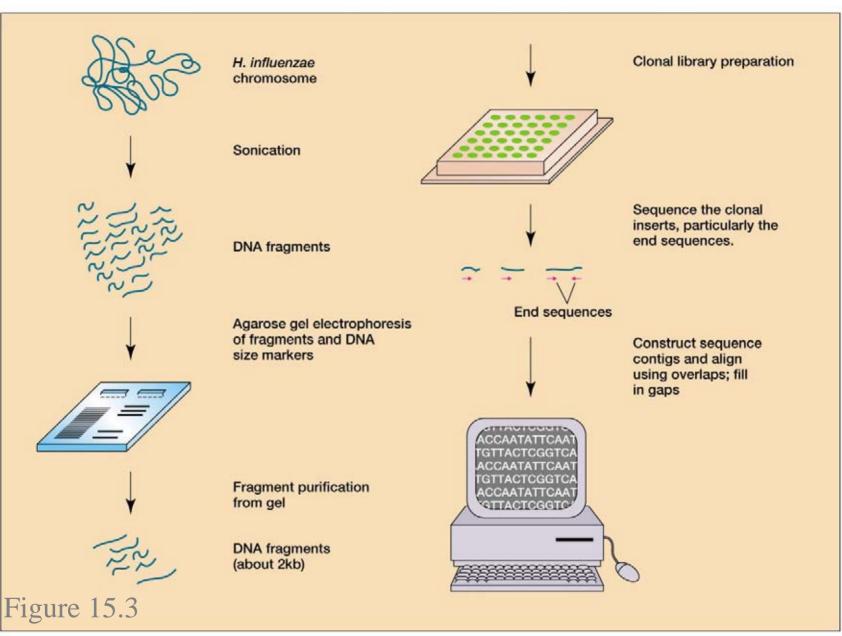



Figure 15.1

Sanger method


- mix single strands of DNA with primer, DNA polymerase I, 4 deoxynucleotides (one of which is radiolabeled), small amount of one ddNTP
- DNA synthesis occurs; random insertion of ddNTP generates DNA fragments of different lengths
- four reactions carried out; each with different ddNTP
- fragments in each reaction mixture separated electrophoretically
- gel autoradiographed and sequence read

Automated methods

Whole-Genome Shotgun Sequencing

- developed in 1995 by J. Craig Venter and Hamilton Smith
- four stage process
 - library construction
 - generates clones of portions of genome
 - random sequencing
 - determines sequences of clones
 - fragment alignment and gap closure
 - editing

Annotation

- process that locates genes in the genome map
- identifies each open reading frame in genome
 - a reading frame > 100 codons that is not interrupted by a stop codon
- uses databases to assign tentative function of gene

16S MgPar	Ribosomal RNA MgPa Repeat Transfer RNA	1 kb	Biosynthesi Cell envelop Cellular pro		groups, carriers	Pu Pu Re	ergy metabolic tty acid and pl rines, pyrimidi igulatory funct iplication	nospholipid nes, nucleo				Transport/bir Translation Transcription Other catego Hypothetical Unknown	nes
447 449 845 4000 4000	40	452 451	455 454 454	a - 491	418 419 440	461	442	40	a 194	447	and of the second	10	innananana.
400		103 404 405 405 24 425 434 4	407 408 409 127 424 429	410 411 430 4)1	412	413	437 438	192	19 440	441 442	420	it in it.	447
	343 144	185	184		300 300		discourse and	92 591	<	3.05		423	194 394
150	119 360	261,242,249, 244	365 166	387 368	369 37		112 × 11	3 374 9	325	nem	< ³⁷⁸	379	380 383
a Do <i>giji</i> 345		341	10 - 10			12 348	145	350	35	128292	4		
324 325 1	a for the second	1.528		2,333	111	336		11.	311		119	Waltar	340
303	Pelandradianan Seaa		12	×14 315	314 317	-		-	321		322	123	11
277	within the		299	282 280 292 200	284 285 284 101 303	NaPar	RoPar 3	288	324	289 2	307	308	305
26.5	MaPaz	361	261	263 264 265	246	K) AND A	269 <#	270	271.	272	271 71	215	- 77 - 27
240 241	242 243	344	145 246 247 248 AUTOR	249 2	0 251	252 x 25	1. _K 2	si	255	10,255	257 256	259	250 Ettapolicion
218	119020 221	222 223	224 225	226 MgPar 227	220 229 230	231	-	235 23	257	234	239	240	243
20	1 204		\$04 2.07	284 214 218	11 212		14 215	216	: 	210	Low A	218.	
3.06		180 190	193		192		Nallar	194		Series :	1961971981		2612
UNE 1993	145 eNUA	235 #55	the second s	149			10	10	180		2000 (1970) 1971 (1970)		and the second
218		20	•		141	130 11 1000000			146	Lat.	129		161 1521
4 095 C	096	697 (0)4	099 10		103 104	10%	In the second	109	×110		112 11)		8 116 111 8 116 111
015	873 824	075	014 017	619 015	000	061 082	00) 004	065	086 0	1066	.089.	290 292 093	
142 043		QKA	065 0	047	068		NgPar	-	269	-	-	923	073
940 0	41 042	043 044	045 046 (047 01	19 010 011	012 05	3 054	03.5	034 95	7 058 01	9.040	061	062
120 : 031	071 033	024 025	036 027 028 029 03	10. 03	1	:032	. 033	.134	034	034	0377	018	03.0 04/

Figure 15.5

Bioinformatics

- field concerned with management and analysis of biological data
- uses computers to do so
- DNA sequence data stored in large databases
 - e.g., International Nucleic Acid Sequence
 Data Library (GenBank)

General Characteristics of Microbial Genomes

- numerous genomes have been completed
- examination has led to formulation of numerous hypotheses about microbial genomes

Table 15.1 Examples of Complete Published						
Microbial Genomes	Domain*	Size (Mh)	5 G + C			
Aprobacterium tumefaciens	.0	3.67	57-63			
Aquifex oeolicus	8	1.50	43			
Archaeoglobes fielglabes	A	2,18	48			
Bacillus subtilis	в	4.20	43			
Bornelia burgdorferi	8	1.44	28			
Competitibacter jejoni		1.64	31			
Caudebacter crescention	0	4.02	62-67			
Chlomydia preumoniae	B	1.23	-40			
Chlomydia trochomatix	B	1.05	41			
Chiorobiam tepidam	B	2.15	37			
Cloursdian perfringent	8	3.03	29			
Corynelisterian glatamicum	8	3.3	55-58			
Deinococcus natiodatant	11	3.28	67			
Escherichia voli		4.60	.50			
Hormophilus influentor Rd	D	1.80	29			
Malobacterium sp. NRC-1	A	2.57	68			
Helicobacter pilori	в	1.65	.39			
Linevia monocytogenes	в	2.9	37-39			
Methanobucteriam thermosanotrophicam	- 4	1.75	-49			
Wethanococcus januachii	2	1.75	31			
Wethanococcus januarchi Micobacteriam Jepnae	î	3.27	31			
Mycobacterium taberculosis		4.40	65			
Mycoplasma genitalium	B	0.58	11			
Nycoplasma presatoriae	B	0.58	40			
	0	2.27	51			
Neixeeria meningitidis	n	6.41	41			
Numoc ap. PCC 7120	n	6.3	67			
Psessilomanas aeraginosa Pancocura koriksohii	1.75	1.80	42			
	AB					
Rickensia prowacekii	E	1.10	29			
Socilianimpore cerevitatae		4.86				
ialmonella typhimarian	n	2.8	50-53			
Suphylococyan аннин Солотория самина	B	2.8	33			
Омуртичностия вышава		2.09	40			
Streptococcus pneumoniae	B	1.9	39			
linepilococcus psotgenes	B	1.9	39			
Oreprompties coefficador	n A	2.69	33			
Saiffedobus solaulasi San homenia an	ĥ	3.57	30 47			
Symethocyatis ap.	A	1.36	46			
Dermeplama acidophilan Dermotoga maritima	â	1.50	46			
Dermotoga maritima Depotente publidum	B	1.50	40			
Orponena pullulum Wheis cholenie	8	4.0	48			
	8	4.0	48			
Gerslinke pestils	- 15	4.63	48			

12

Some interesting findings

- minimal genome size
 - based on analysis of *Mycoplasma genitalium* genome
 - smallest procaryotic genome sequenced
 - ~108-121 genes not required for growth in laboratory
 - ~265-350 genes required for growth in laboratory

- many identified genes have unknown function
 - e.g., Mycoplasma genitalium
 - 22% have unknown function
 - e.g., Haemophilus influenzae
 - > 40% have unknown function
 - e.g., Methanococcus jannaschii
 - a member of Archaea
 - 66% have unknown function
 - e.g., *E. coli*
 - ~2500 of 4288 genes have unknown function

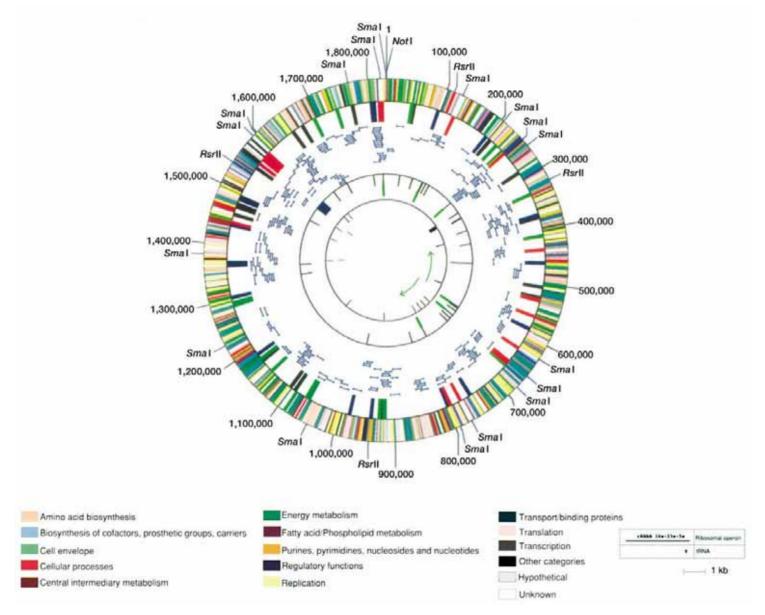


Figure 15.6

 evolutionary relationships

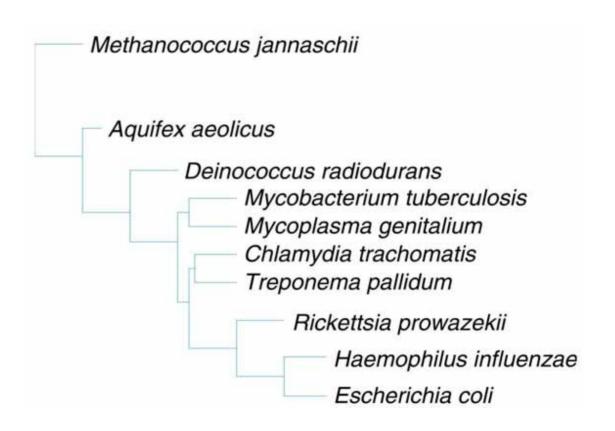
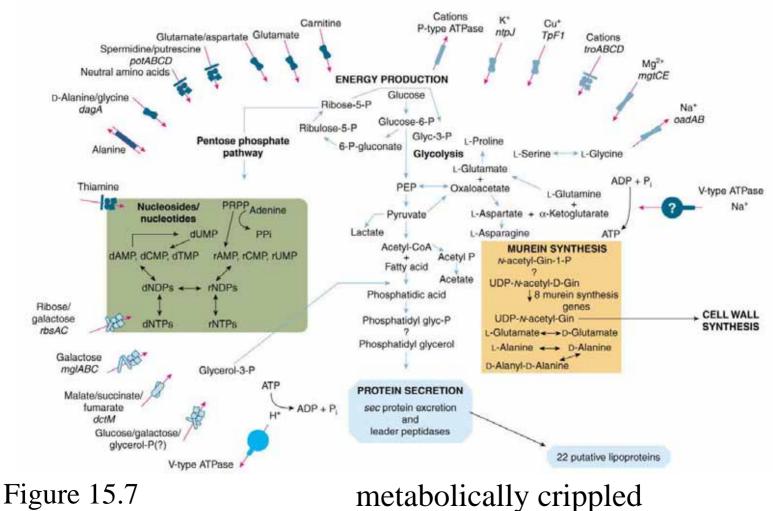



Figure 15.4

- deinococci
 - radiation resistant bacteria
 - have large number of DNA repair genes
- Rickettsia prowazekii
 - causes typhus fever
 - closely related to ancient bacterium that gave rise to mitochondria by endosymbiosis

- chlamydiae
 - despite unusual life cycles, lack of peptidoglycan, and parasitic life styles, have genomes similar to many other bacteria
 - e.g., genes for ATP synthesis
 - e.g., genes for peptidoglycan synthesis
 - other surprises
 - lack gene thought to be required for cell division
 - at least 20 genes obtained from eucaryotic hosts, including plant genes

More findings: *Treponema* pallidum...

- Mycobacterium tuberculosis and Mycobacterium leprae
 - though closely related have very different sized genomes
 - *M. tuberculosis* large genome
 - >250 genes devoted to lipid synthesis
 - large number of regulatory genes
 - *M. leprae* much smaller genome
 - ~ half of genome devoid of functional genes

- Staphylococcus aureus
 - several antibiotic resistance genes on plasmids and transposons
 - virulence genes on genomic islands
- Streptococcus pyogenes

 prophages contain genes for virulence factors
- Streptococcus pneumoniae
 - genes for enzymes that destroy host cell membranes
 - ~5% of genome consists of insertion sequences

General patterns

- despite conservation of protein sequences, genome organization is very variable
- considerable horizontal gene transfer has occurred in evolution of bacteria and archaea

Functional Genomics

- determination of how genome works
- three common approaches
 - genome annotation
 - study of RNA-level gene expression
 - study of protein-level gene expression

Genome Annotation

Table 15.2	Estimated Number of Genes Involved in	Various Cell Functions ^a

Gene Function	Escherichia coli K12	Bacillus subúlis	Mycoplasma genitalium	Treponema pallidum	Rickettsia prowazekii	Chlamydia trachomatis	Mycobacterium tuberculosis	Methanococcus jannaschii	Pyrococcus abyssi
Approximate total number of genes ^b	2,933	2,232	477	757	523	847	2,095	1,271	1,345
Cellular processes ^e	179	123	6	77	27	43	65	26	44
Cell envelope components	146	86	29	53	36	42	50	25	25
Transport and binding proteins	304	223	33	59	18	57	87	56	67
DNA metabolism	97	80	29	51	39	53	57	53	33
Transcription	38	45	13	25	23	23	26	21	19
Protein synthesis	121	105	90	97	87	100	90	117	99
Regulatory functions	159	163	5	22	6	15	77	18	19
Energy metabolism ^d	351	230	33	54	48	61	211	158	116
Central intermediary metabolisme	64	61	7	6	6	12	57	18	25
Amino acid biosynthesis	89	97	0	7	9	13	72	64	51
Fatty acid and phospholipid metabolism	67	53	8	11	11	25	78	9	8
Purines, pyrimidines, nucleosides, and nucleotides	75	68	19	21	12	15	48	37	40
Biosynthesis of cofactors and prosthetic groups	97	79	4	15	17	31	84	49	31

^aData adapted from TIGR (The Institute for Genomic Research) databases.

^bThe number of genes with known or hypothetical functions.

"Genes involved in cell division, chemotaxis and motility, detoxification, transformation, toxin production and resistance, pathogenesis, adaptations to atypical conditions, etc.

^dGenes involved in amino acid and sugar catabolism, polysaccharide degradation and biosynthesis, electron transport and oxidative phosphorylation, fermentation, glycolysis/gluconeogenesis, pentose phosphate pathway, Entner-Doudoroff, pyruvate dehydrogenase, TCA cycle, photosynthesis, chemoautotrophy, etc.

"Amino sugars, phosphorus compounds, polyamine biosynthesis, sulfur metabolism, nitrogen fixation, nitrogen metabolism, etc.

Evaluation of RNA-Level Gene Expression NA microarrays (DNA chips)

- solid supports (e.g., glass) that have DNA attached in highly organized arrays
 - expressed sequence tag (EST) partial gene sequence unique to gene
- incubated with labeled mRNA or cDNA (targets),
 which hybridize to complementary "spot" on chip
- expressed genes "light up" on chip

construction of DNA chip by synthesizing oligonucleotides directly on glass support

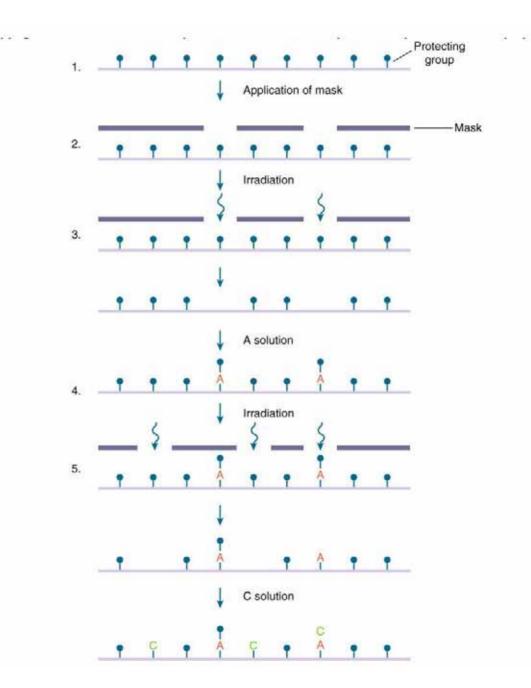
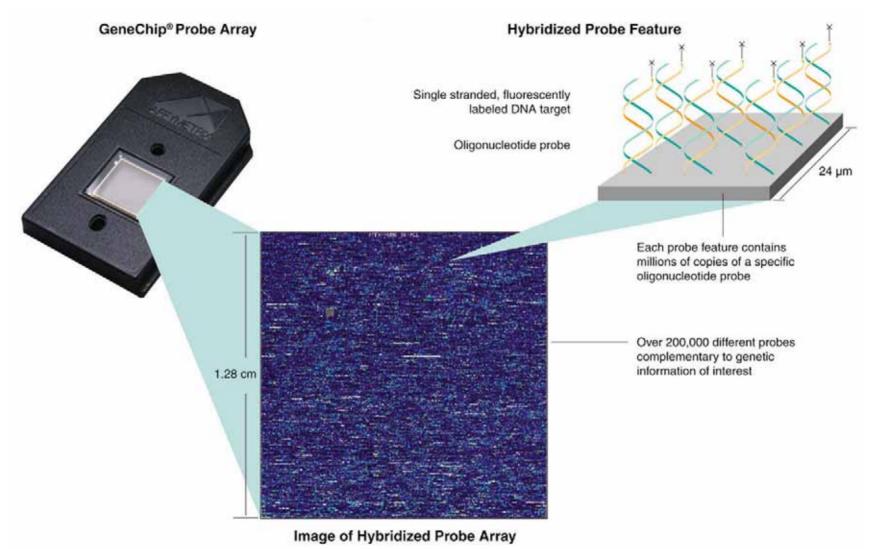



Figure 15.8

Figure 15.9

Evaluation of Protein-Level Gene Expression

- entire collection of proteins that an organism produces
- proteomics
 - study of the proteome

Types of proteomic analysis

- functional proteomics
 - study of function of cellular proteins, how they interact, and ways they are regulated
- structural proteomics
 - using known protein structures to predict three-dimensional structures of other proteins and protein complexes

Evaluation of Protein-Level Gene Expression...

- usual approach is two-dimensional gel electrophoresis
- can also couple two-dimensional gel electrophoresis with mass spectrometry

Two-dimensional gel electrophoresis

- separation of a mixture of proteins along two dimensions
 - first dimension isoelectric focusing
 - each protein moves through pH gradient until reaches pH that equals its isoelectric point
 - second dimension SDS gel electrophoresis
 - proteins separated based on size

Two-dimensional gel electrophoresis

- when coupled with mass spectrometry, used to:
 - determine mass of each protein
 - determine amino acid composition or sequence of each protein
 - identify protein

The Future of Genomics

- many challenges and opportunities
 - e.g., development of new methods for large-scale analysis of genes and proteins
 - e.g., integration of information to understand workings of cell
 - e.g., insights into pathogenicity
 - e.g., development of new drugs to treat disease
 - e.g., identification of novel enzymes, biopesticides, and other molecules of industrial or agricultural importance