Chapter 12

Genes: Expression
and Regulation



DNA Transcription or RNA
Synthesis

e produces three types of RNA

— tRNA
e carries amino acids during protein synthesis

— rRNA
e component of ribosomes

— MRNA
e directs protein synthesis



Transcription in Procaryotes

e polygenic mMRNA
— contains directions for > 1 polypeptides

Initiation Termination
codon codon
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Transcription In procaryotes...

o catalyzed by a single RNA polymerase
— large multi-subunit enzyme



Transcription In procaryotes...

e E. coli RNA polymerase
— core enzyme = o3’

— holoenzyme = core enzyme + sigma factor (directs
core enzyme to promoter)

 Thermus agquaticus RNA polymerase
— core enzyme = a,,BB'®
— holoenzyme = core enzyme + sigma factor
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Table 12.1 RNA Bases Coded for by DNA

Purine or Pyrimidine

DNA Base Incorporated into RNA
Adenine Uracil

Guanine Cytosine

Cytosine Guanine

Thymine Adenine
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Procaryotic terminators

e two types
— hairpin + 6
uridines
— rho factor-

dependent

» lack polyU and
often lack hairpin

Figure 12.4
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Transcription Iin Eucaryotes

Table 12.2 Eucaryotic RNA Polymerases

Enzyme Location Product
RNA polymerase | Nucleolus rRNA (5.8S, 18S, 28S)
RNA polymerase I Chromatin,
nuclear matrix mRNA
RNA polymerase 111 Chromatin,
nuclear matrix tRNA, 5S rRNA

 monogenic MRNA
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Transcription In eucaryotes...

e promoters contain three common
elements

— TATA box ~ 30 bases before transcription
start

— CAAT box ~ 75 bases before transcription
start

— GC box ~ 90 bases before transcription start
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RNA splicing
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Ribozymes

e RNA molecules with
catalytic activity

e e.g., self-splicing
rRNA molecules
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Protein Synthesis

e translation

— synthesis of polypeptide directed by
sequence of nucleotides iIn mMRNA

 direction of synthesis N terminal — C-
terminal

e ribosome
— site of translation

— polyribosome — complex of mMRNA with
several ribosomes
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Transfer RNA and

Amino Acid Activation
e attachment of amino acid to tRNA

o catalyzed by aminoacyl-tRNA synthetases

— at least 20

« each specific for single amino acid and for all the
tRNAs to which each may be properly attached
(cognate tRNAS)
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Aminoacyl-tRNA

Figure 12.11
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The Ribosome

e procaryotes
— 70S ribosomes = 30S + 50S subunits

o eucaryotes
— 80S ribosomes = 40S + 60S subunits

— mitochondrial and chloroplast ribosomes
resemble procaryotic ribosomes
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Initiation of Protein Synthesis

e Involves ribosome

subunits and N-formylmethionine-tRNA - bacterial
Initiator tRNA 0
numerous Y
additional CH,— S — CH, — CH, — CH — C — tRNA™""
molecules NIH
— Initiator tRNA (L— ’
— Initiation factors | .
(IFs) H
Figure 12.14

archaea and eucaryotes use
methionine-tRNA
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e the goal —
position ribosome
properly at 5’ end
of MRNA

Figure 12.15
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Elongation of the Polypeptide

. (é}pn%!—l{i]on cycle

— sequential addition of amino acids to growing
polypeptide
— consists of three phases
« aminoacyl-tRNA binding
 transpeptidation reaction
 translocation

— Involves several elongation factors (EFS)
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tRNA binding sites of ribosome

o peptidyl (donor; P) site
— binds initiator tRNA or tRNA attached to growing
polypeptide (peptidyl-tRNA)

e aminoacyl (acceptor; A) site
— binds incoming aminoacyl-tRNA
e exit (E) site
— briefly binds empty tRNA before it leaves ribosome
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Transpeptidation reaction
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Peptide bond formation l

translocation —
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Termination of Protein
Synthesis

o takes place at any one of three codons

— nonsense (stop) codons — UAA, UAG, and
UGA

* release factors (RFs)
— aid In recognition of stop codons
— 3 RFs function in procaryotes
—only 1 RF active in eucaryotes
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Figure 12.18
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Protein Folding and Molecular
Chaperones

 molecular chaperones

— proteins that aid the folding of nascent
polypeptides

— protect cells from thermal damage
e e.g., heat-shock proteins

— aid In transport of proteins across membranes
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Protein folding — eucaryotes
Versus procaryotes

e domains
— structurally independent regions of polypeptide
— separated from each other by less structured portions of
polypeptide
* In eucaryotes
— domains fold independently right after being synthesized
— molecular chaperones not as important
e In procaryotes

— polypeptide does not fold until after synthesis of entire
polypeptide

— molecular chaperones play important role
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Protein Splicing

e removal of part
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Regulation of mMRNA

. Slynthesis
regulation of geAe expression

conserves energy and raw materials

maintains balance between the amounts
of various cell proteins

allows organism to adapt to long-term
environmental change
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Induction and Repression

 Inducible enzyme

— level increases in presence of inducer

« small molecule, usually substrate of catabolic pathway in
which enzyme functions

e repressible enzyme

— level decreases in presence of corepressor

» usually end product of biosynthetic pathway in which the
enzyme functions
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Negative Control

e presence of regulatory protein (repressor)
at regulatory site (operator) decreases
MRNA synthesis

* repressor proteins
— exist in active and inactive forms

— Inducers and corepressors alter activity of
repressor
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Positive Control

e presence of a regulatory protein
(activator protein) at a regulatory region
promotes transcription

e e.g., lactose operon

— requlated by catabolite activator protein
(CAP) and cyclic AMP (cAMP)

e CAP also called cyclic AMP receptor protein
(CRP)
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3-galactosidase reaction
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CAMP

e binds to and
activates CAP

Figure 12.27
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CAP

Figure 12.29
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Figure
12.28
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Attenuation

 regulation of transcription by the behavior
of rilbosomes

e observed in bacteria, where transcription
and translation are tightly coupled

— translation of a mMRNA can occur as the
MRNA Is being synthesized
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Coupled transcription and
translation in procaryotes
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e.g., the tryptophan operon

e operon that Losdor popic - »
encodes enzymes - e _';pm m?er.e
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Global Regulatory Systems

o affect many genes and pathways
simultaneously

e regulon

— collection of genes or operons controlled by a
common regulatory protein
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Catabolite Repression

e occurs when operon is under control of
catabolite other than initial substrate of
pathway

 allows preferential use of one carbon source
over another when both are available In
environment

e e.g., catabolite repression of lactose and
other operons by glucose

— glucose decreases cAMP levels, thereby blocking
CAP binding and decreasing mRNA synthesis
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Figure 12.32
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Regulation by Sigma Factors

and Control of Sporulation

 different sigma factors recognize different
promoters

 substitution of sigma factors changes gene
expression of many genes and operons
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e.g., Bacillus subtilis sporulation

sigma factors

e synthesized only as cell switches from
vegetative growth to sporulation

 |ead to transcription of sporulation-related
genes
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Small RNAs (sRNAs) and
Regulation

 also called noncoding (nNC)RNAs
» do not function as mMRNA or rRNA

e appear to regulate genes by three different
mechanisms

— pair directly with other RNAs (e.g., OxyS RNA and
mickF RNA )

— via RNA-protein interactions (e.g., OxyS RNA)

— Intrinsic activities (e.g., RNase P RNA and
tmRNA)
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e.g., OxyS RNA of E. coli

 made In response to hydrogen peroxide
exposure

e can act as an antisense RNA
— binds directly to mRNA and blocks translation

e can also block translation by binding a
protein required for translation of a target
MRNA
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e.d., mick RNA of E. coli

* regulates synthesis of OmpF porin protein
— porin proteins are outer membrane proteins

— different porins produced under different
conditions
 OmpC porin made when in intestine
o OmpF porin made when in dilute environment

* micF antisense RNA binds OmpF RNA and
blocks its translation when bacterium in
Intestines
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e.g., RNase P RNA

* the RNA component of

e has catalytic activity res
processing

RNase P

nonsible for tRNA
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e.d., timRNA of E. coll

* helps repair problems caused by defective
MRNASs that lack stop codons

e acts as both alanyl-tRNA and mRNA when
ribosome stalls at end of defective mRNA

e two functions
— releases ribosome from defective mRNA

— adds carboxy-terminal polypeptide tag to protein,
marking it for degradation
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Two-Component Phosphorelay
Systems

o transfer of phosphoryl groups control gene
transcription and protein activity

e e.d., sporulation in B. subtilis
e e.g., chemotaxis in E. coll
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Sporulation in B. subtilis
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Chemotaxis In E. col

Figure 12.34
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Control of the Cell Cycle

o cell cycle

— complete sequence of events extending from
formation of a new cell through next division

— requires that DNA replication and cell division
be tightly coordinated

e precise mechanisms of control are not
known
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Cell cycle control Iin E. coli

e two separate control pathways
— sensitive to cell mass
— sensitive to cell length

Threshold Imitiation Division
length — ofdivision ———= proteins and
reached process seplum precursors

F Septation ——= Division

Initiation Initiation DNA replication and partition Partitioned

mass —» of DNA »  DNA

reached replication copies
I I I |
0 20 40 60

fime (minutes)
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Effect of growth rate

e slow growth rate

ication

— DNA replicated then -
septation begins

e rapid growth rate

— DNA replicated and
new round of DNA
replication begins
before septation
begins

=)

Figure 12.35



