Chapter 11

Genes: Structure,
Replication, and Mutation



Terms and concepts

e clone
— population of cells that are genetically identical

e genome

— all genes present in a cell or virus
* haploid — one set of genes
 diploid — two sets of genes

genotype
— specific set of genes an organism possesses

phenotype

— set of observable characteristics



DNA as Genetic Material

« established by several critical experiments
— Fred Griffith (1928)

— Oswald T. Avery, C. M. MacLeod, and M. J.
McCarty (1944)

— Alfred D. Hershey and Martha Chase (1952)
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Transforming principle

» R colonies

R cells + purified S cell polysaccharide

» R colonies

R cells + purified S cell protein

R cells + purified S cell RNA

» R colonies

R cells + purified S cell DNA

» S colonies

S cell extract + protease + R cells

» S colonies

» S colonies

S cell extract + RNase + R cells

Figure 11.2
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The Central Dogma

O Replication

DNA

l Transcription

l Translation

Figure 11.4 Proteln



Nucleic Acid Structure

Ribose or
Purine and pyrimidine bases deoxyribose

L )
1

Nucleoside or deoxynucleoside Phosphoric acid

N J

'

Nucleotide or deoxynucleotide

|

Figure 11.5a Nucleic acid (RNA, DNA)




Examples of nucleosides

nitrogenous base
+ pentose sugar

HOCH

OH OH
Adenosine 2’-deoxycytidine

Figure 11.5b



DNA Structure

nitrogenous bases
—-ATG,C
pentose sugar

— deoxyribose

chain of nucleotides linked by
phosphodiester bonds

usually a double helix, composed of two
complementary strands
— base pairing rules

e Awith T

e GwithC
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two polynucleotide
chains are anti-
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Figure 11.7b
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RNA Structure

e nitrogenous bases
— A, G, C, U (instead of T)

° pentose sugar
— ribose

« usually consists of single strand of nucleotides linked
by phosphodiester bonds
— can coil back on itself

« forms hairpin-shaped structures with complementary
base pairing and helical organization

* base pairing rules
— A with U
— G with C
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Types of RNA

e three types
—ribosomal RNA (rRNA)
— transfer RNA (tRNA)
— messenger RNA (MRNA)

o differ from each other in function, site of
synthesis in eucaryotic cells, and
structure
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The Organization of DNA In
Cells

e organization differs in two cell types
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Procaryotic DNA

e usually exists as
closed circular,
supercoiled
molecule
associated with
basic proteins

Figure 11.9
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Eucaryotic DNA

e |[iInear molecules

e associated with
histones

e colled into
repeating unit
called
nucleosomes

-

Figure 11.10

H1
DNA
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DNA Replication

e complex process involving numerous
enzymes and proteins

* In general, process is similar in all
organisms
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Patterns of DNA Synthesis
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Patterns of DNA synthesis...

e INn procaryotes P i
. . ([ »——— Origin
— bidirectional from a \_/ ’
single origin of :
replication
— replicon \ Replication forks
» portion of th N/
genome that |
contains an origin e
and is replicated ﬂ_,_,;;--t:-_;h / 2 101K mo"e
as a unit /N, In opposite

hA G

~Z— (irections

||1 ‘ \ ”.;.
Figure 11.12 &—f"“ /
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Patterns of DNA synthesis...

 In eucaryotes

— bidirectional 10100 um
— multiple origins of - = ~
. . ~-— — - —
replication @\\/,@
Replication

forks

Figure 11.14
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Patterns of DNA synthesis...

e some small
circular
genomes (e.qg.,
viruses and
plasmids

— replicated by
rolling-circle
mechanism

Figure 11.13
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Mechanism of DNA

Replicati()n in bacteria
3 DNA polymerase 111 synthesizes DNA

-parated
T
synthesized as f,>\

Leading strand

Dy primase 1-[-|-[-|-|-t-a; ;
Okazaki prinee A D
fragment L loslosloslssls 3’
Lagging strand e "/ DA gyrase,
helicases
3 ,f ~—unwind strands and relieve
o , tension caused by unwinding

Figure 11.16 o



DNA polymerase Il

e uses each strand o g Oz
as template and e E
synthesizes L |
complementary O
strands -

Figure 11.15
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% — . synthesized continuously by DNA polymerase Il

5}
Fork movement
eading strand
j .
J?-.
j 7>\)\ SSBs
A SRR SRS
primer \ z”‘) [5,
; 3’
= > | | loelse|es loeles]ee le3
o DNA gyrase,
, helicases
Ry
= synthesized discontinuously Figure 11.16
DNA polymerase | removes DNA ligase joins fragments
primers and fills gaps to form complete strands of

DNA
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DNA
ligase
reaction

Figure 11.18
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Leading strand sSsB

Helicase
3 30000000000000000000C0000—#-8y, /_ONAGymse
3
5 XO0000000000000000000000CY, g 58

Lagging strand

3[‘

5|‘
3!’
3?
S Primosome making primer
R

MA primer

DNA Polymerase I l

Leading strand template
3?
5r‘

Figure 11.17
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Leading strand template

Figure 11.17

DNA Polymerase I

Completed Okazaki
fragment

DNA polymerase |
replacing RNA primer

DNA ligase
joining fragments g



Some amazing facts

e > 30 proteins required to replicate E. coli
chromosome

e occurs with great fidelity

— error frequency = 10 or 1010 per base pair
replicated

— due to proofreading activity of DNA polymerases
Il and |

e occurs very rapidly
— 750 to 1,000 base pairs/second in procaryotes
— 50-100 base pairs/second in eucaryotes
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The Genetic Code

e the manner in which genetic instructions

for polypeptide synthesis are stored within
genome

e colinearity

— sequence of base pairs in DNA corresponds
to the amino acid sequence of polypeptide
encoded
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Establishment of Genetic
Code

e codon
— genetic code word
— specifies an amino acid

e codon meanings deciphered by Marshall
Nirenberg, et al. in 1960s
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Organization of the Code

e code degeneracy

— up to six different codons can code for a
single amino acid

e sense codons
— the 61 codons that specify amino acids

e stop (nonsense) codons

— the three codons used as translation
termination signals

— do not encode amino acids
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Table 11.1 The Genetic Code

Second Position

L] C A G
uuu ucu UAU UGuU U
Phe Tyr Cys
uuc ucC UAC UGC C
u } Ser
ULUA UCA UAA UGA STOP A
Leu STOP
uuG ucG 4 UAG UGG Trp G
Cuu ] ccu 9 CAU } CGU U
His
C CucC CCC CAC CGC C g
5 } Leu b Pro Arg 3
E CUA CCA CAA CGA A S
< Gln -
i cuG 4 CCG CAG CGG G =
g =
2 AUU ) acu AAU AGU U 2
z A Asn Ser é
| e =
§ AUC Il ACC b AAC AGC C B
i Thr =
i3 AUA | ACA AAA AGA A =
Lys Arg
AUG Met ACG Y AAG AGG G
GUU GCU GAU GGU U
G } Asp
GUC GCC GAC GGC C
Val / Ala Gly
GUA GCA GAA } GGA A
Glu
GUG GCG GAG GGG G
e codde 15 presented in the KNA form, Codons ron in the 57 1o 37 direction. See text for detoils.
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Wobble

e |0oose base
pairing
— 3" position of
codon less
Important than
1st or 2nd
e eliminates need
for unique tRNA
for each codon

(a) Base pairing of one glycine tRNA with three codons due to wobble

Gly 5 Gly Gly
3 | | |
0 0 0
tRMNA
ccl el ccl
mRANA % @Gu —=° GGC GGA

(b} Glycine codons and anticodons (written in the 5 —s 3’ direction)
Glycine mANA codons: GGU, GGC, GGA, GGG

Glycine tRNA anticodons: ICC, CCC

Figure 11.19
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Gene Structure

e gene

— linear sequence of nucleotides with a fixed
start point and end point

— encodes a polypeptide, a tRNA, or an
rRNA

e cistron — gene that encodes a polypeptide

e reading frame

— organization of codons such that they can
be read to give rise to a gene product
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Importance of reading frame

Reading Reading
start start

| |

— = —— 4 " —r = = =
DNA TACGGTATGACCT TACGGTATGACCT

| |

5 s = —— 55— —%—

o |

His

Pro

Peptide Met
Figure 11.20

Tyr Trp Cys Thr — Gly
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Organization of genes on
chromosomes
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e SOme bacteria
and some viruses
have overlapping
genes

Figure 11.21b
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Procaryotic versus eucaryotic

genes

e procaryotes (and viruses)
— coding information is usually continuous

* eucaryotes

— most genes have coding seguences
Interrupted by noncoding sequences

e exons — coding sequences
 Introns — noncoding sequences
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Genes That Code for Proteins

strand that contains coding information
and directs RNA synthesis

RNA polymerase recognition site
Nontemplate strand
RANA polymerase binding site g
/ IPrian‘w bﬂx] emplate strand
=35 “10 +1
1 1
1 I

5 el _— ' /

I ] I 7/
DMNA /
L

1
N : : —
B e s in, o i . -ﬁ‘-_"u"_"#
w Antileader Coding region Antitrailer Terminator

/ Direction of transcription

Transcription
start

serves as recognition and binding site for RNA polymerase

Figure 11.22
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Bacterial promoters

- 35 region - 10 region G
TTGACA TATAAT oNnsensus sequences
RNA polymerase recognition RNA polymerase binding
site site
GTTGTGTGGAAT
i N
5" -CCCCAGGCTTTACACTTTATGCTTCCGGCTCGTAT F‘F = TGTGAGC- 37
3 -GGGGTCCGAAATGTGAAATACGAAGGCCGAGCATA {;-:uﬂlu ACACTCG- &'
\ CAACACAC L’l TA Beginning of RNA chain
+
Template strand - o ~

Region unwound by
RNA polymerase in
open complex

Figure 11.23 also called
Pribnow box
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region that specifies sequence of amino
acids in a polypeptide

RANA polymerase recognition site
Nontemplate strand
RANA polymerase binding site ’
/ (Pribnow box) / amplate strand

R | | o 1 1 |

5 |- ] 1 r A ) 1 ]
DMA /

B | i g | | i

| \.-I_ I ) I I |

- 4 o — e

Promoter Antileader Coding region Antitrailer Terminator

Direction of transcription
Transcription -
direction of movement of RNA polymerase

Figure 11.22



RANA polymerase recognition site
RANA polymerase binding site
/ (Pribnow box)

Nontemplate strand

Template strand

7/

1
1
1
1
o

Coding region

l transcription

" i
Antitrailer  Terminator

=35 =10 +1
R —— = :
DNA
¥ : :
Promoter Antileader
Shine-Dalgarno
G sequence
or
& 1Ai.IG
mANA 5 ol
<>\
Translation start

(initiation codon)

I 3’
ey
Trailer

recognition site for ribosome

sequence that is not translated

Figure 11.22
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RANA polymerase recognition site
RANA polymerase binding site
/ (Pribmow box)

signal for termination of
transcription

Nontemplate strand

Template strand

=35 “10 +1
£ 1 1 T 1 1 |
5 | = o | 1 A 1 I 1
DMNA /

¥ - : : / A i —

Promoter Antileader Coding region w
/ Direction of transcription

Transcription =
start

Figure 11.22

transcribed but mMRNA
sequence is not translated
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Genes That Code for tRNA and
rRNA

tRNA
genes have
prom Oter, anticodon

Anticodon

leader, h/ N

croOPO0O0CCD
FPOrOcCcc
|
Q
I

coding, o
spacer, and DERe; g
trailer
regions tRNA
precursor
Figure 11.24a ° —— ek -

leader, spacer, and trailer removed during maturation process
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rRNA genes have promoter, leader,
coding, spacer, and trailer regions

235
16S

{ \ ¥ / \
ior2 : : { 0-2
55 ’
Spacer tRNA Trailer tRNA
Figure 12.24b spacer and trailer regions may encode

tRNA molecules
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Mutations and Their Chemical

Basis
e mutations
— stable, heritable change in nucleotide
sequence

— may or may not have an effect on the
phenotype of an organism
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Mutations and Mutagenesis

 mutations can be classified in terms of
their effect on phenotype
— morphological mutations
* change colonial or cellular morphology
— lethal mutations
e kill the organism

— conditional mutations

« expressed only under certain conditions (e.g.,
high temperature)

49



Other types of mutations

* biochemical mutations
— changes in metabolic capabillities

— auxotrophs
* have mutations in biosynthetic pathways
« cannot synthesize product of pathway

* require product of pathway as nutrient in minimal growth
media

— prototrophs
* grow in minimal media without supplements

e resistance mutations
— resistance to pathogen, chemical, or antibiotic
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How mutations arise

e spontaneously
— develop in absence of any added agent

— usually thought to arise randomly

 directed (adaptive) mutation

— mutations that may result from hypermutation
followed by selection

 induced
— develop after exposure to a mutagen
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Spontaneous Mutations

* result of:
— errors in DNA replication
— damage to DNA
— Insertion of transposons
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Replication errors — tautomeric
shifts

.. H H,C
* keto form— imino L %\(%H
or enol form N""' M |

N N
N‘H\H - -'-H
g \n/ H., NP N \n/ H‘N N

; N N S
Rare imino form ]\ M""‘N N N

N N Rare en.nl form | \
¢ a|terS hydrogen' Ryl o \ oL H Guanine
] enine
bonding
characteristics of i CH,
base N %\f‘-’--.
m ‘"""l-[..'N e . e 8
-~ \g/ ", HxN N\ \n’/ H., >~ N>
Cytosine EN I N\> Thymlne "“"-» )\
. Rare imino form H Rare enol form
Flgure 11.25a of adenine (A*) of guanine (G*) 53



Outcome of tautomeric shift

I
Rare and temporary enol A

Wild type
tautomeric form of guanine

A

- >
R O—
- O
> ——
O O—

o~ N ot
- DNA . Gjﬁ‘ o =Ly L AT

e
rEplicatign . .& -8 SEBSABE SEARS Mutant

I
AL LI Y] —-_ ﬂ}?} DNA .

Parental DNA »  Wild type

First-generation N AR Wild type

progeny .

Second-generation
progeny

Figure 11.25b
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Replication errors - frameshifts

e deletion or

addition of
base pairs

o alters reading

frame

Figure 11.26

Slippage leading to an addition

—

" CGTTTT
" GCAAAAACGTARC.

Slippage in
new strand

o

(G T)

& TTT
" GCAAAAACGTAGC.

|

/f' = ""x\
(G T)

'' & TTTTTGCATG
" GCAAAAACGTAGC.

@ oo

Slippage leading to a deletion

=

CGTTT

GCAAAAACGTARC.

Slippage in
parental strand

GCAAACGTAC..

®
l

CGTTTGCATG
GCAAACGTARC..

(» »
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Induced Mutations

e caused by chemical or physical agents
that damage or alter the chemistry of DNA,
or that interfere with DNA repair
mechanisms

56



Base analogs

e Similar to
nitrogenous bases

* Incorporated Iinto
DNA during
replication

* have different
base-pairing
characteristics

Adenine S-bromouracil
(normal amino state) (normal keto state)

- Guanine H S-bromouracil
F I g u re 1 1 . 2 7a (normal amino state) (uncommon encl state) -
o]



Mutagenesis by the base
analog 5-bromouracil (Bu)

+Bu

Figure 11.27b

58



Specific mispairings

e occur when
mutagen
changes base’s
structure and
pairing
characteristics
— e.g., alkylating

agents

Figure 11.28

————————— o
2 /N‘_‘,: : - H
. C—C
Pairs y W |
nomally J}_ He N c —N Guanine
with \ / N\
cytosine C=N
!
—————— H— N
\ N
H
o
O=N—N H
. /
C—N
Il N NO
NH 2
N-methyl-N"-nitra-N-nitrosoguanidine
Y
5
N
N\ e
C—C C—H
7N ; _
_________ N c =N 0" - methylguanine
Sometimes N / hS
pairs C=N
with /
thymine |—————— H— N
A\
H
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Intercalating agents

e planar molecules

e pbecome Inserted between stacked bases
of helix, distorting DNA

e cause single base pair additions and
deletions

e e.g., proflavin and acridine orange
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DNA-damaging agents

e severely damage
DNA so that it
can’'t serve as
template for
replication 0
e repair
mechanisms
allow survival, but
also cause
mutations

Figure 11.29
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The Expression of Mutations

o wild type

— most prevalent form of gene
 forward mutations

— wild type — mutant form

e reverse mutations
— mutant phenotype — wild type phenotype
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Forward mutations

Table 11.2 Summary of Some Molecular Changes from Gene Mutations

Type of Mutation

Kesult and Example

Forward Mutations

Single Nucleotide-FPair ( Base-Pair) Substitutions
At DMNA Level
Transilion
Transversion
At Protein Level

Silent mutation

Mewtral mutation

Missense mutation
MNonsense mutation

Single Nucleotide-Pair Addition or Deletion: Frameshift Mutation

Intragenic Addition or Deletion of Several to Many Nucleotide Pairs

Purine replaced by a different purine, or pyrimidine replaced by a different
pyrimidine {e.g., AT — GC).

Purine replaced by a pyrimidine, or pyrimidine replaced by a purine
(e.g., AT » C0).

Triplet codes Tor same aming acid:
AGG — CGG
both code for Arg
Triplet codes Tor different bul funciionally cquivalent aming acid:
AAA (Lys) — AGA (Arg)
Triplet codes for a different amino acid.
Triplet codes tor chain termination:
CAG (Gln) — UAG (stop)
Any addition or deletion of base pairs that is nol a multiple of three resulis in a
frameshift in reading the DNA segments that code for proteins.

Froan Aw Introcluction fo Genetic Amalysis, 3rd ediion by Soeoki, Gniliths, Miller and Lewontine Copynight & 15986 by W, H. Freeman wnd Company. Used with permssion,
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Reverse mutations

Table 11.2 Summary of Some Molecular Changes from Gene Mutations

Type of Mutation

Result and Example

Reverse Mutations

True Reversion

Equivalent Reversion

AAA (Lys) 2™, GAA (Glu) —€, AAA (Lys)
wild type mtant wild type

UCC (Ser) a8 UGE (Cys) —=2% _, AGC (Ser)
wild type mutant wild type

. forward e . EVETHE " .
OGC (Arg, basic) — " CCC (Pro, not basic) ————— CAC (His. basic)
wild 1ype mutant pseudo-wild 1ype

Suppressor Mutations

Intragenic Suppressor Mutations
Frameshift of opposite sign at site within gene, Addition of X
1o the base sequence shifts the reading frame from the CAT
codon o XCA followed by TCA codons, The subsequent
deletion of a C base shifts the reading frame back to CAT.

Extragenic Suppressor Mutations
MNonsense su PPressors

Physiological suppressors

CATCATCATCATCATCAT
+ (=)

CATXCATATCATCATCAT
et e e e i e
Xz ¥ ¥ ¥

-

Gene (e.g., for tyrosine tRNA) undergoes mutational event in its anticodon
region that enables it to recognize and align with a mutant nonsense codon
{e.g.. UAG) 1o insert an amino acid (tyrosine) and permit completion of the
translation,

A defect in one chemical pathway is circumvented by another mutation—for

example, one that opens up another chemical pathway o the same product, or

one thal permits more ellicient uplake of a compound produced in small
quantities because of the original mutation.

From An Bitecluction fo Gemetic Analvars, 3nd edition by Swzuki, Griffiths, Miller and Lewontine Copyright € 1986 by W, H. Freeman and Company, Used with permission,
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Other mutations

e regulatory mutations
— changes In regulatory sequences
— alter control of gene expression

 IRNA and tRNA mutations
— can disrupt protein synthesis

— some tRNA mutations are suppressor
mutations
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Detection and Isolation of
Mutants

e mutations are generally rare
—one per 107 to 101! cells
 finding mutants requires sensitive

detection methods and/or methods to
Increase frequency of mutations
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Mutant Detection

* observation of changes in phenotype
 replica plating technique
— used to detect auxotrophic mutants
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Replica plating

Treatment of E. coli cells
with a mutagen, such as

nitrosoguaniding,
Handla
 — Velvet surface Incubation
& / _ |sterilized)
"
- Replica plate

= | (medium minus lysine) do not grow.
Inoculate a plate /
containing complate

growth medium and
incubate, Both wild-type

and mutant survivors Master plate Culture

will farm colonies, (complete medium) lysina
auxotroph
(Lys™ ).

Replica plate

All strains grow.
[complete medium)

Figure 11.31
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Mutant Selection

e use of
environmental
condition In
which only
desired mutant
will grow
— e.g., selection for

revertants from

auxotrophy to
prototrophy

Figure 11.32

Treatment of lysine auxotrophs (Lys™) with
a mutagen such as nitresoguanidine or UV
radiation to produce revertants.

Plate out mixture on minimal
medium (which lacks lysine).

Incubate.

| Only prototrophs
#| able to synthesize
lysine will grow.
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Carcinogenicity Testing

e based on observation that most
carcinogens are also mutagens

 tests for mutagenicity are used as screen
for carcinogenic potential

e e.g., Ames test
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o

. Culture of

e reversion rate AMes o

in presence Of TeSt 3 histidine auxotrophs
suspected

CarC|n0gen > ] Complete medium Medium with test
reversion rate in i Ata cu"uk . e

absence of
suspected
carcinogen

° then, agent |S a Incubate at 37°C
mutagen, and

may be
carcinogen

Spontaneaus Revertants induced

Figure 1133 revertants by the mutagen



DNA Repailr

» proofreading

— correction of errors in base pairing made
during replication
— errors corrected by DNA polymerase

« other repair mechanisms repair incorrect
pairings and DNA damage
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Excision Repailr

e corrects damage that causes distortions in
double helix

—e.g., thymine dimers
— e.g., apurinic and apyrimidinic sites
—e.g., damaged bases
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Repair enzyme bound to DNA

Enzyme detects distortion due to dimer. Endonuclease activity cuts damaged DNA
strand, B nucleotides to 5’ side of the dimer

and 4 or 5 nucleotides to 3’ side.

Damaged segment diffuses away.

DNA polymerase | fills gap and DNA ligase
seals remaining nick.

Figure 11.34



Removal of Lesions

e photoreactivation
— used to directly repair thymine dimers

— thymines separated by photochemical
reaction catalyzed by photolyase

 direct repair of alkylated bases

— catalyzed by alkyltransferase or
methylguanine methyltransferase
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Postreplication Repair

* type of excision repair

e e.g., mismatch repair system in E. col

— mismatch correction enzyme scans newly
synthesized DNA for mismatched pairs

— mismatched pairs removed and replaced
by DNA polymerase and DNA ligase
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DNA methylation

» used by E. coli postreplication repair
system to distinguish old DNA strands

from new DNA strands

— old DNA methylated; new DNA not
methylated

o catalyzed by DNA methyltransferases
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Recombination Repailr

 repairs DNA with damage in both strands
 Involves recombination with an
undamaged molecule

—In rapidly dividing cells, another copy of
chromosome is often available

e recA protein catalyzes recombination
events
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SOS repailr

 Inducible repair system

e used to repair excessive damage that
halts replication, leaving many gaps
— recA protein initiates recombination repair

— recA protein also acts as protease,
destroying a repressor protein and thereby
Increasing production of excision repair
enzymes
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chromosomes

T=T

Bound recA protein has protease activity

Cleavage of lexA repressor proteins by
MpE € pincreon

Figure 11.35 ?Cf?#? o \ / / /
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