Anabolism

- synthesis of complex molecules and cellular structures
- turnover
- continual degradation and resynthesis of cellular constituents
- rate of biosynthesis approximately balanced by rate of catabolism
- requires much energy

Figure 10.1

Table 10.1 Biosynthesis in Escherichia coli

Cell Constituent	Number of Molecules per Cell		
	Molecules Synthesized per Second	Molecules of ATP Required per Second for Synthesis	
DNA	1 b	0.00083	60,000
RNA	15,000	12.5	75,000
Polysaccharides	39,000	32.5	65,000
Lipids	$15,000,000$	$12,500.0$	87,000
Proteins	$1,700,000$	$1,400.0$	$2,120,000$

From Bioenergetics by Albert Lehninger. Copyright © 1971 by the Benjamin/Cummings Publishing Company. Reprinted by permission.
${ }^{\text {a }}$ Estimates for a cell with a volume of $2.25 \mu \mathrm{~m}^{3}$, a total weight of $1 \times 10^{-12} \mathrm{~g}$, a dry weight of $2.5 \times 10^{-13} \mathrm{~g}$, and a 20 minute cell division cycle.
It should be noted that bacteria can contain multiple copies of their genomic DNA.

Principles Governing Biosynthesis

- macromolecules are synthesized from limited number of simple structural units (monomers)
- saves genetic storage capacity, biosynthetic raw material, and energy
- many enzymes used for both catabolism and anabolism
- saves materials and energy

More principles...

- catabolic and anabolic pathways are not identical, despite sharing many enzymes
- permits independent regulation

More principles...

- breakdown of ATP coupled to certain reactions in biosynthetic pathways
- drives the biosynthetic reaction to completion
- in eucaryotes, anabolic and catabolic reactions located in separate compartments
- allows pathways to operate simultaneously but independently

More principles...

- catabolic and anabolic pathways use different cofactors
- catabolism produces NADH
- NADPH used as electron donor for anabolism
- large assemblies (e.g., ribosomes) form spontaneously from macromolecules by self-assembly

Calvin cycle

- in eucaryotes, occurs in stroma of chloroplast
- in cyanobacteria, some nitrifying bacteria, and thiobacilli, may occur in carboxysomes
- inclusion bodies that contain ribulose-1,5bisphosphate carboxylase (rubisco)
- consists of 3 phases

The Carboxylation Phase

- rubisco catalyzes addition of CO_{2} to ribulose-1,5bisphosphate (RuBP), forming 2 molecules of 3phosphoglycerate

Figure 10.3

The Reduction Phase

- 3-phosphoglycerate reduced to glyceraldehyde 3-phosphate

Copyright O The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 10.4

The Regeneration Phase

- RuBP regenerated
- carbohydrates
(e.g., fructose and glucose) are produced

Copyright O The MeGraw-Hill Companies, Inc. Pernission required for reproduction or display.

Figure 10.4

Summary

$6 \mathrm{CO}_{2}+18 \mathrm{ATP}+12 \mathrm{NADPH}+12 \mathrm{H}^{+}+$ $12 \mathrm{H}_{2} \mathrm{O}$
 $$
\downarrow
$$

glucose $+18 \mathrm{ADP}+18 \mathrm{P}_{\mathrm{i}}+12 \mathrm{NADP}^{+}$

Synthesis of Sugars and Polysaccharides

- gluconeogenesis
- used to synthesize glucose and fructose from noncarbohydrate precursors
- sugar nucleoside diphosphates
- important in synthesis of other sugars, polysaccharides, and bacterial cell walls

Gluconeogenesis

- generates glucose and fructose
- most other sugars made from them
- functional reversal of glycolysis
- 7 enzymes shared
- 4 enzymes are unique to gluconeogenesis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 10.5

Anaplerotic CO_{2} fixation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
phosphoenolpyruvate (PEP)
carboxylase:
$\mathrm{PEP}+\mathrm{CO}_{2} \rightarrow$ oxaloacetate

pyruvate carboxylase: pyruvate + $\mathrm{CO}_{2} \rightarrow$ oxaloacetate

Figure 10.17

