Anabolism

- synthesis of complex molecules and cellular structures
- turnover
 - continual degradation and resynthesis of cellular constituents
- rate of biosynthesis approximately balanced by rate of catabolism
- requires much energy

Cell Constituent	Number of Molecules per Cell ^a	Molecules Synthesized per Second	Molecules of ATP Required per Second for Synthesis
DNA	1 ^b	0.00083	60,000
RNA	15,000	12.5	75,000
Polysaccharides	39,000	32.5	65,000
Lipids	15,000,000	12,500.0	87,000
Proteins	1,700,000	1,400.0	2,120,000

Table 10.1 Biosynthesis in Escherichia coli

From Bioenergetics by Albert Lehninger. Copyright © 1971 by the Benjamin/Cummings Publishing Company. Reprinted by permission.

^aEstimates for a cell with a volume of 2.25 μ m³, a total weight of 1 × 10⁻¹²g, a dry weight of 2.5 × 10⁻¹³g, and a 20 minute cell division cycle.

^bIt should be noted that bacteria can contain multiple copies of their genomic DNA.

Principles Governing Biosynthesis

- macromolecules are synthesized from limited number of simple structural units (monomers)
 - saves genetic storage capacity, biosynthetic raw material, and energy
- many enzymes used for both catabolism and anabolism
 - saves materials and energy

More principles...

- catabolic and anabolic pathways are not identical, despite sharing many enzymes
 - permits independent regulation

More principles...

- breakdown of ATP coupled to certain reactions in biosynthetic pathways
 - drives the biosynthetic reaction to completion
- in eucaryotes, anabolic and catabolic reactions located in separate compartments
 - allows pathways to operate simultaneously but independently

More principles...

- catabolic and anabolic pathways use different cofactors
 - catabolism produces NADH
 - NADPH used as electron donor for anabolism
- large assemblies (e.g., ribosomes) form spontaneously from macromolecules by self-assembly

Calvin cycle

- in eucaryotes, occurs in stroma of chloroplast
- in cyanobacteria, some nitrifying bacteria, and thiobacilli, may occur in carboxysomes
 - inclusion bodies that contain ribulose-1,5bisphosphate carboxylase (rubisco)
- consists of 3 phases

The Carboxylation Phase

 rubisco catalyzes addition of CO₂ to ribulose-1,5bisphosphate (RuBP), forming 2 molecules of 3phosphoglycerate

The Reduction Phase

 3-phosphoglycerate reduced to glyceraldehyde 3-phosphate

The Regeneration Phase

- RuBP regenerated
- carbohydrates

 (e.g., fructose
 and glucose) are
 produced

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary

6CO₂ + 18ATP + 12NADPH + 12H⁺ + 12H₂O

glucose + $18ADP + 18P_i + 12NADP^+$

Synthesis of Sugars and Polysaccharides

- gluconeogenesis
 - used to synthesize glucose and fructose from noncarbohydrate precursors
- sugar nucleoside diphosphates
 - important in synthesis of other sugars, polysaccharides, and bacterial cell walls

Gluconeogenesis

- generates glucose and fructose
 most other sugars made from them
- functional reversal of glycolysis
 - 7 enzymes shared
 - 4 enzymes are unique to gluconeogenesis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Anaplerotic CO₂ fixation

phosphoenolpyruvate (PEP) carboxylase: PEP + $CO_2 \rightarrow$ oxaloacetate

pyruvate carboxylase: pyruvate + $CO_2 \rightarrow$ oxaloacetate