1 The pea aphid as both host and vector for the phytopathogenic bacterium,

- 2 Pseudomonas syringae
- 3
- 4
- 5 John Stavrinides, Jodi K. McCloskey, and Howard Ochman
- 6

7

- 8 Department of Ecology and Evolutionary Biology, University of Arizona, 1007 E. Lowell
- 9 Street, Tucson, Arizona, 85721
- 10
- 11
- 12 **<u>Running Title</u>**: Vectoring of *P. syringae* by aphids
- 13
- 14 Journal Section: Invertebrate Microbiology
- 15

16 Corresponding Author:

- 17 John Stavrinides
- 18 University of Arizona
- 19 1007 E Lowell Street
- 20 Tucson, Arizona21 85721
- 21 85721 22 Ph. (520
- 22 Ph. (520) 626-8344 23 Fx. (520) 621-3709
- 24 Email: johnstav@email.arizona.edu
- 25
- 26

27

28 Abstract

29	Aphids are widespread agricultural pests that are capable of disseminating plant viral
30	diseases; but despite coming into frequent contact with epiphytic bacteria, aphids are
31	considered as having no role in bacterial transmission. Here we demonstrate the ability of
32	pea aphids to vector the phytopathogen Pseudomonas syringae pv. syringae B728a
33	(PsyB728a). While feeding on plants colonized by epiphytic bacteria, aphids acquire the
34	bacteria, which colonize the digestive tract, multiply and are excreted in the aphid
35	honeydew, resulting in inoculation of the phyllosphere with up to 10^7 phytopathogenic
36	bacteria per cm ² . Within days of ingesting bacteria, aphids succumb to bacterial sepsis,
37	indicating that aphids serve as an alternative, non-plant host for PsyB728a. The related
38	strain <i>Pseudomonas syringae</i> pv. tomato DC3000 is >1000-fold less virulent than
39	PsyB728a in the pea aphid, suggesting that PsyB728a possesses strain-specific
40	pathogenicity factors that allow it to exploit aphids as hosts. To identify these factors, we
41	performed a mutagenesis screen and recovered PsyB728a mutants that were
42	hypovirulent, including one defective in a gene required for flagellar formation and
43	motility. These interactions illustrate that aphids can also vector bacterial pathogens and
44	that even seemingly host-restricted pathogens can have alternative host specificities and
45	lifestyles.

46 Introduction

47	Aphids are prolific insect pests that impact numerous agricultural crop plants (8).
48	Although direct parasitization of their hosts can reduce plant biomass, crop quality, and
49	crop yield, aphids are of particular importance for their role in the dissemination of plant
50	disease (24, 30). Phytopathogenic viruses can be acquired by aphids as they probe
51	infected plant hosts with their stylet (29, 30), with the subsequent movement of infected
52	aphids to healthy plants contributing significantly to the dissemination of plant disease
53	(29). Surprisingly, however, aphids are considered strictly vectors of phytopathogenic
54	viruses, despite their frequent physical contact with a variety of bacterial epiphytes (10).
55	Upon landing on a potential host, the aphid begins to explore the plant, probing
56	the plant tissues with its stylet, and puncturing through the epidermal layers to locate and
57	access the phloem sieve tube elements to feed (3, 18, 24). As it traverses the plant
58	surface, the aphid continually evaluates the suitability of the host, with some aphid
59	species sampling plant fluids with droplets of saliva that are expelled and reingested (3).
60	This saliva can contact the plant surface where many bacterial epiphytes reside, such as
61	the ubiquitous phytopathogens, Pantoea agglomerans and Pseudomonas syringae (4, 5,
62	10, 21, 22, 32).
63	The pea aphid, Acyrthosiphon pisum, feeds on a variety of agriculturally relevant
64	crop plants in the Fabaceae, including soybean (Glycine max), fava/broad bean (Vicia

65 *faba*), pea (*Pisum sativum*) and snap bean (*Phaseolus vulgaris*) (15, 28, 34-36), and has

been shown to vector bean yellow mosaic virus between these hosts (15, 34-36). Several

67 of these plants are also primary hosts for the highly aggressive bean pathogen

68 Pseudomonas syringae pv. syringae B728a (PsyB728a), which establishes epiphytically

69	and can invade the plant and cause disease $(4, 5, 17)$. Although PsyB728a generally
70	exhibits low survivorship on plant surfaces due to limitations of carbohydrate and water
71	(23), it can form aggregates on plant surfaces, which can be further dispersed by
72	rainsplash (16, 17, 26, 37). Ultimately, under optimal environmental conditions, high
73	titres of bacteria increase the likelihood of plant disease (17).
74	In this study, we describe the vectoring of the phytopathogenic bacterium <i>P</i> .
75	syringae by the pea aphid. We illustrate infection of the aphid by epiphytic populations of
76	PsyB728a, which multiply in the aphid and are deposited onto the plant surface in high
77	titre via the aphid honeydew. In addition, we provide an account of <i>P. syringae</i> infecting
78	a non-plant host, and identify a PsyB728a mutant that is hypovirulent in A. pisum.
79	Materials and Methods
80	Aphid lines, bacterial strains and growth conditions
81	Isolates of Pseudomonas syringae were grown overnight with continuous shaking
82	in 5 ml LB medium at 25°C. <i>Escherichia coli</i> DH5a and RK600 were grown in 5 ml LB
83	medium at 37°C. When applicable, antibiotics were supplemented at the following
84	concentrations: chloramphenicol (64 μ g/ml), kanamycin (50 μ g/ml), rifampicin (50
85	μg/ml), and ampicillin (150 μg/ml). The pea aphid, Acyrthosiphon pisum strain 5A, was
86	maintained at 20°C on fava bean plants. For screening and growth assays, a modified
87	aphid artificial diet containing essential amino acids, vitamins, and sucrose was used
88	(11). Fava bean plants were grown by sowing fava bean seeds in 1:1 ratio of Sunshine
89	Mix to vermiculite. Approximately 11-day-old seedlings were used in all assays.
90	Transposon mutagenesis and screening

91	Transposon mutagenesis of PsyB728a was performed via triparental mating,
92	whereby a helper strain containing a self-transmissible plasmid assists in mobilizing a
93	plasmid from a donor to the recipient strain. The mini-Tn5 vector pBSL118 in E. coli
94	VPE42 (carrying kanamycin and ampicillin resistance) was used as donor, E. coli RK600
95	(chloramphenicol resistance) used as helper, with PsyB728a as the intended recipient.
96	The three parental strains were combined in a 1:1:1 ratio, spotted on LB medium without
97	antibiotics, and incubated overnight at 28°C-30°C. Bacterial lawns were resuspended in
98	10mM MgSO ₄ , and serial dilutions plated on LB medium containing rifampicin and
99	kanamycin. Single transconjugants were dipped into each well of a 96-well microtitre
100	plate that contained 350 μ L of artificial aphid diet. Positive (wildtype PsyB728a) and
101	negative (no bacteria) controls were included on each plate. Plates were sealed with
102	parafilm, allowing the aphid diet in each chamber to contact the parafilm. These plates
103	were each placed on top of a second plate that contained a single second or third aphid
104	instar in each well, so that the wells aligned, allowing the aphids to feed on diet
105	containing a single transconjugant. Plates were kept at ambient temperature and scored
106	after 3-4 days. Transconjugants were recovered from those wells in which the aphid
107	survived longer than the wildtype control. Positives were then confirmed to be <i>P</i> .
108	syringae via both blue/white screening and PCR, and retested eight times.
109	Approximately 1500 mutants were screened.
110	Mutated genes were identified by inverse PCR (31). Briefly, genomic DNA from
111	each mutant was extracted using the Gentra Puregene Kit (Qiagen, California, USA)
112	according to manufacturer's instructions. Between 1-2 μ g of gDNA were digested using
113	<i>HincII</i> and <i>EcoRI</i> in a 20 μ l volume. After heat inactivation, 10 μ l of each digest was

114	used in a unimolecular ligation, consisting of 15 units of T4 DNA ligase (Fermentas,
115	Maryland, USA) in a final volume of 200 μ l. After overnight incubation at 16°C, the
116	ligation was purified using the Qiagen PCR purification kit (Qiagen, California, USA),
117	eluting in a final volume of 30 μ l. Individual PCRs were performed on 2, 5, and 10 μ l of
118	the purified product, using primers npt-41 (5'-AGC CGA ATA GCC TCT CCA CCC
119	AAG-3') and npt+772 (5'-TTC GCA GCG CAT CGC CTT CTA TC-3').
120	Site-directed mutagenesis and homologous integration
121	Genes targeted for disruption included YP_237273.1 (Psy4205), a 7509-bp gene
122	with homology to the TcdA1 toxin complex gene of Photorhabdus luminescens
123	(AAF05542.1) but lacking any major protein domains, and YP_237102.1 (Psy4034), a
124	2946-bp gene with homology to the TccA3 toxin complex gene of Photorhabdus
125	luminescens (NP_928150.1), which is also lacks any informative protein folds or
126	domains. A trp terminator was introduced into pBluescript (Stratagene, California, USA)
127	by the ligation of oligos 5'-AAT TGA GCC CGC CTA ATG AGC GGG CTT TTT TTT
128	G - 3' and 5'-AAT TCA AAA AAA AGC CCG CTC ATT AGG CGG GCT C - 3' into
129	the EcoRI restriction site, creating pBluescript-trp. A 500-bp portion of Psy4034 was
130	amplified from <i>P. syringae</i> pv. syringae B728a using primers Psy4034+1 (5'-ATG ACC
131	GAG CAA CCC TTC TCC C-3') and Psy4034-568 (5'-GAT TGA CGA TGT GCA
132	GCG TAG GC - 3'), which was subsequently ligated into pBluescript-trp. A fragment of
133	Psy4205 was amplified using Psy4205+64 (5'- GCT GCA CAG GCG TTG ATA TCC C
134	- 3') and Psy4205-549 (5'- CGT TAC ATC CAG CTT CAG CGA CTC TC - 3'), and
135	also ligated into pBluescript-trp. Both constructs were introduced into P. syringae pv.

- 136 syringae B728a independently by electroporation in 0.2 cm cuvettes using a Micropulser
- 137 electroporator (Biorad) with a setting of 2.5 kV.
- 138 Bacterial growth assays

139 Second and third instar aphids were allowed to feed for 14 hours on aphid artificial diet containing 10^7 cfu/ml of either *P. syringae* pv. syringae B728a or *P.*

140

141 syringae pv. syringae DC3000, after which, aphids were transferred to fresh diet. Three

- 142 aphids were sampled at 12-hour intervals, macerated in 100 µl of 10mM MgSO₄, and
- 143 dilutions plated on LB containing rifampicin. Growth assays were performed three times
- 144 with similar results.
- 145 Vectoring experiment
- 146 Second and third instars were allowed to feed for 14 hours on artificial diet
- containing 10⁷ cfu/ml of *P. syringae* pv. syringae B728a. Up to 20 aphids were 147
- 148 transferred to fava bean plants and allowed to incubate for seven days at 24°C under
- 149 ambient light. After seven days, leaves were harvested, washed in 10mM MgSO₄, and
- 150 the wash was then plated on LB containing rifampicin. Colony counts were performed
- 151 after 24-48 hours. Leaf surface area was calculated by tracing leaves on grid paper.

152 Experiments were performed twice, with at least five plants used per experiment.

153 Aphid infection from epiphytic bacterial populations

154 Fava bean leaves and stems were brushed with PsyB728a, resuspended in 10 mM 155 MgSO₄ (OD₆₀₀ = 1.8), and second and third instars of *A. pisum* 5A were introduced at the 156 base of the plant. After 24 hours in ambient light, all aphids on the plant were collected,

- 157 and each was placed into an individual 1.5 ml microfuge tube containing 100 µl of 10
- 158 mM MgSO₄. Surface bacteria were washed from the aphid by agitation, and 10 µl of the

159 wash plated on LB plates containing rifampicin. Each aphid was then macerated with a 160 pestle in the remaining 90 µl, and 10 µl of the homogenate plated on LB containing 161 rifampicin. Bacterial growth was examined after 24-36 hrs. Aphids were scored as being 162 infected if bacteria were completely absent from the wash but at least 10 cfu were present 163 on plates containing the homogenate. Experiments were repeated twice, each with 30-80 164 aphids screened from each of three plants. 165 Swimming and swarming assays 166 Swimming and swarming assays of *P. syringae* strains were conducted by 167 inoculating 5 μ l of an overnight culture (OD₆₀₀ > 1) in the center of 0.2%-0.6% LB agar 168 plates and incubating at room temperature (25°C) overnight. 169 Results 170 Infected aphid honeydew inoculates plant surfaces. 171 To determine if aphids become infected from plants colonized epiphytically with 172 PsyB728a, healthy aphids were introduced onto fava bean plants that were surface-173 inoculated with PsyB728a. Recovered aphids surveyed for the presence of ingested 174 bacteria revealed an infection rate of 15%, with infection rates of up to 29% in some 175 experiments. As a result of these studies, we found that aphid honeydew can contain high 176 titres of bacterial inoculum, as assayed by a plating method. Because of this, we 177 postulated that infected aphids contribute to the inoculation of plants with PsyB728a. To 178 quantify the relative size of the PsyB728a inoculum that can be introduced through aphid 179 honeydew onto the leaf surfaces, infected aphids were transferred to healthy fava bean 180 plants, and leaves assayed for the presence of bacteria. Leaves contained bacterial titres averaging 3.6 x 10^8 colony forming units (cfu) per leaf (4.5 x 10^7 cfu/cm²), with some 181

182	leaves harboring titres of up to 1.6×10^9 cfu (1.6×10^8 cfu/cm ²). On average, each aphid
183	was responsible for depositing 2×10^7 cfu on leaves over the duration of the experiment.
184	PsyB728a, but not PtoDC3000, is pathogenic to the pea aphid.
185	We conducted pathogenicity assays with the bean pathogen PsyB728a and the
186	tomato pathogen Pseudomonas syringae pv. tomato DC3000 (PtoDC3000) to determine
187	if entomopathogenicity is either strain- or species-specific. After feeding on an artificial
188	diet supplemented with bacteria, the PsyB728a titre in aphids was approximately 6 x 10^3
189	cfu/aphid, increasing to 3 x 10^6 cfu/aphid after 24 hours (Figure 1). Titres remained at this
190	level through to 36 hours, after which, mortality set in, with only 5-10% of aphids
191	surviving 48 hours. By comparison, titres of PtoDC3000 at transfer were 8 x 10^2
192	cfu/aphid, which increased exponentially to $1 \ge 10^9$ cfu/aphid by 72 hours, exceeding the
193	lethal PsyB728a concentration of 3 x 10^6 cfu/aphid (Figure 1).
194	Putative insecticidal genes of PsyB728a are not responsible for virulence in pea aphids.
195	Interspecific genomic analysis of PsyB728a revealed the presence of several
196	conserved genes implicated in entomotoxicity in other systems. These include homologs
197	of the Photorhabdus luminescens toxin complex (tc) genes, of which PsyB728a retains a
198	cluster containing at least one homolog of <i>tcaA</i> , <i>tccC</i> , <i>tcdA</i> , and <i>tcdB</i> (Figure 2). A
199	genomic comparison of PsyB728a and PtoDC3000 exposed disruptions or deletions of
200	some of these genes in PtoDC3000 that remained intact in PsyB728a (Figure 2), possibly
201	accounting for the observed differences in entomopathogenicity in the aphid
202	pathosystem. To test the involvement of these genes in pathogenicity, we disrupted the
203	open reading frames of Psy4034 and Psy4205 in PsyB728a independently by single

AEM Accepts published online ahead of print

- 204 crossover homologous recombination (Figure 2); however, each mutant retained full
- 205 virulence, as determined by a qualitative lethality assay (data not shown).
- 206 <u>A PsyB728a *fliL* mutant is attenuated in virulence</u>.

A transposon-mutagenesis screen designed to recover genetic loci contributing to PsyB728a pathogenicity in the pea aphid identified one hypovirulent mutant that was disrupted in the flagellar basal body-associated protein, *fliL*. A qualitative pathogenicity assay of this mutant indicated significantly reduced virulence, with aphids surviving for up to 120 hours (data not shown), unlike wildtype PsyB728a, which caused almost

212 complete aphid mortality in 36 hours.

213 To determine the relative growth rate of this mutant during aphid colonization, we 214 assayed bacterial titres over a 72-hour period. The PsyB728a (fliL::Tn5) mutant began at lower titres at transfer ($<10^2$ cfu/aphid), but grew exponentially, reaching titres of 4 x 10^7 215 cfu/aphid by 48 hours, which fell to 3 x 10^6 cfu/aphid by 72 hours. The *fliL* mutant was 216 217 able to reach and surpass the lethal dose of the wildtype PsyB728a concentration of 3 x 10⁶ cfu/aphid, closely resembling the growth curve of the avirulent PtoDC3000 (Figure 218 219 1). Given that the *fliL*-mutant bacteria were able to achieve even higher densities than 220 wildtype PsyB728a, and the prominent role of *fliL* in bacterial motility, we decided to 221 evaluate swimming and swarming proficiency. Swarming assays of PtoDC3000, 222 PsyB728a and PsyB728a (*fliL*::Tn5) revealed that mutation in the *fliL* gene reduced 223 swimming ability (Figure 3A) and eliminated swarming ability (Figure 3B). Wildtype 224 PtoDC3000, which has been shown to be capable of swarming (7, 9), also exhibited 225 swarming proficiency in our experiments (not shown).

226 Discussion

227	The current model of <i>P. syringae</i> dissemination onto and between host plants
228	involves rainsplash-mediated inoculation from infected to uninfected plants, facilitated
229	largely by the aggressive epiphytic and aggregation capabilities of <i>P. syringae</i> (17, 25,
230	27). We have extended this model by showing that aphids contribute directly to pathogen
231	amplification and inoculation of the plant phyllosphere following aphid infection through
232	contact with epiphytic populations of PsyB728a (Figure 4). Transient ingestion of surface
233	bacteria by aphids likely occurs during stylet-mediated plant host probing, which is
234	consistent with the observation that aphids probe candidate host plants repeatedly during
235	initial colonization (3, 18). Ingested bacteria migrate through the aphid digestive tract,
236	establish in the gut (unpublished data), multiply, and are eventually deposited onto leaves
237	in the aphid honeydew. As the bacterial load in the aphid approaches lethal titres, aphids
238	stop feeding and begin to wander, continually depositing infected honeydew over plant
239	surfaces in the process. Moreover, because aphid honeydew is carbohydrate-rich,
240	deposited bacteria are effectively suspended in a nutrient-laden droplet that may enhance
241	their survival on the leaf surface. Epiphytic bacterial populations typically have high
242	mortality in the phyllosphere, with 75% of the epiphytic population becoming non-viable
243	after 80 hours (38, 39); thus, the deposition in a carbohydrate-rich droplet suspension
244	likely contributes to the persistence of the bacteria on the leaf surface and is also
245	consistent with previous findings of sugar availability in the phyllosphere enhancing
246	bacterial colonization of host plants (23).
247	The dispersal of <i>P. syringae</i> by an insect vector is not only consistent with its
248	epiphytic life stages and likelihood of encountering insects in a foliar ecosystem, but also
249	with the presence of many genetic loci commonly attributed to insect association and

250	entomopathogenicity in <i>P. syringae</i> genomes (20). Although many of these attributes are
251	present in other pseudomonads, only one other documented case of insect-mediated
252	dispersal of a Pseudomonas species has been documented. The rhizobacterium
253	Pseudomonas chlororaphis is vectored by the spotted cucumber beetle, Diambrotica
254	undecimpunctata, following infection through feeding on infected roots or foliage (33).
255	Other reports highlight indirect dispersal of pseudomonads, in which the insect does not
256	serve as host, but merely carries the bacteria externally $(17, 19)$. In the case of the <i>P</i> .
257	syringae-aphid interaction, the bacteria are not only internalized, but can also replicate in
258	their insect vector prior to dispersal.
259	Although typically considered a dedicated plant pathogen, PsyB728a clearly
260	exploits the aphid as a secondary host, since it can support pathogen replication, escape,
261	and dispersal. The drastic difference between the pathogenic abilities of PtoDC3000 and
262	PsyB728a in this pathosystem suggests strain-specific pathogenicity determinants that
263	enable PsyB728a to colonize the pea aphid. This difference is not due to variability in
264	survival or growth rates between the PsyB728a and PtoDC3000 in artificial diet, or to a
265	greater propensity for wildtype PsyB728a to be ingested during the initial feeding. In
266	fact, similar initial titres and growth rates were observed for both strains, yet aphids were
267	unaffected by titres of PtoDC3000 that were lethal with PsyB728a.
268	We had predicted based on genomic comparisons that the tc genes, whose
269	homologs are known to contribute to Photorhabdus luminescens entomopathogenicity,
270	might be at least partly responsible for the observed differences in virulence phenotype
271	(12); however, these genes appear to have no role in this pathosystem. Instead, the
272	isolation and characterization of a hypovirulent <i>fliL</i> mutant suggests an active virulence

273	mechanism that is linked to bacterial motility, and more specifically, bacterial swarming.
274	Because <i>fliL</i> is the leading gene of the FliL operon, transposon disruption may have had
275	polar effects, impacting the proper assembly of the flagellum. The PsyB728a fliL mutant
276	was slightly defective in swimming ability and completely defective in swarming ability,
277	consistent with observations of both Salmonella and E. coli fliL mutants (2); however,
278	swarming alone was not sufficient for virulence, as wildtype PtoDC3000, which is
279	swarming proficient, is avirulent in the aphid. This suggests that <i>fliL</i> and the associated
280	swarming phenotype have a role in the regulation of other PsyB728a-specific virulence
281	factors. In Proteus mirabilis, fliL is responsible for inducing swarmer cell differentiation
282	and regulating virulence gene expression, including heamolysin, urease and protease (1,
283	6), whereas swarming in Vibrio cholerae is linked to the induction of a variety of
284	virulence-associated factors, including pili formation, and the production of
285	hemagglutinin, hemolysins, adhesins, and cholera toxin (13). Thus, in <i>P. syringae</i> , the
286	differentiation of vegetative cells into swarm cells may induce virulence gene expression
287	that contributes to aphid colonization and death. The pathogenicity of Dickeya dadantii
288	toward the pea aphid is mediated by Cyt-like toxin genes (14); however, homologs of
289	these genes are not present in <i>P. syringae</i> , suggesting the involvement of other, as-yet
290	unidentified, strain-specific virulence factors. The identity of such factors could prove
291	useful for the development of effective pest-control strategies.
292	Pathogens often reach a virulence optimum that maximizes both their
293	aggressiveness and transmission potential. Because a highly aggressive pathogen may
294	kill its host before it has an opportunity to disperse, natural selection will favor a
295	reduction in aggressiveness to increase host survivorship and enhance pathogen

296	dissemination (40). In the case of the interaction between <i>P. syringae</i> and the pea aphid,
297	pathogen aggressiveness appears to be extremely high, such that infection results in rapid
298	aphid mortality; however, because P. syringae has a direct and continual escape route
299	from its host, it can exploit the aphid maximally by replicating rapidly without the
300	tradeoff of host survivorship. Thus, the interaction between the
301	phytopathogenic/entomopathogenic PsyB728a and the pea aphid represents a novel host-
302	pathogen relationship in which the pathogen has achieved a virulence optimum that is
303	less dependent on host survivorship, and which simultaneously reduces competition for
304	resources, and enhances pathogen dispersal and fitness in a foliar environment.
305	
306	Acknowledgements
307	We would like to thank Alexander No for technical assistance, Dr. Steven Lindow for
308	providing the sequenced isolate of <i>Pseudomonas syringae</i> pv. syringae B728a, and Dr.
309	Lori Burrows for advice on swimming and swarming assays. We thank Dr. Nancy
310	Moran for support and advice throughout this work, and Becky Nankivell for technical
311	assistance. This work was supported by NIH grant GM56120 to Howard Ochman. John
312	Stavrinides is supported by a Postdoctoral Fellowship from the Natural Sciences and
212	En sine seine Dessenth Coursell of Coursela

References

315	1.	Allison, C., H. C. Lai, and C. Hughes. 1992. Coordinate expression of virulence
316		genes during swarm-cell differentiation and population migration of Proteus
317		mirabilis. Mol. Microbiol. 6:1583-1591.
318	2.	Attmannspacher, U., B. E. Scharf, and R. M. Harshey. 2008. FliL is essential
319		for swarming: motor rotation in absence of FliL fractures the flagellar rod in
320		swarmer cells of Salmonella enterica. Mol. Microbiol. 68:328-341.
321	3.	Auclair, J. L. 1963. Aphid feeding and nutrition. Annu. Rev. Entomol. 8:439-
322		490.
323	4.	Beattie, G. A., and S. E. Lindow. 1999. Bacterial colonization of leaves: A
324		spectrum of strategies. Phytopathol. 89:353-359.
325	5.	Beattie, G. A., and S. E. Lindow. 1995. The secret life of foliar bacterial
326		pathogens on leaves. Annu. Rev. Phytopathol. 33:145-172.
327	6.	Belas, R., and R. Suvanasuthi. 2005. The ability of Proteus mirabilis to sense
328		surfaces and regulate virulence gene expression involves FliL, a flagellar basal
329		body protein. J. Bacteriol. 187:6789-6803.
330	7.	Berti, A. D., N. J. Greve, Q. H. Christensen, and M. G. Thomas. 2007.
331		Identification of a biosynthetic gene cluster and the six associated lipopeptides
332		involved in swarming motility of <i>Pseudomonas syringae</i> pv. tomato DC3000. J.
333		Bacteriol. 189:6312-6323.
334	8.	Blackman, R. L., and V. F. Eastop. 2000. Aphids on the world's crops: an
335		identification and information guide, 2nd ed. ed. Natural History Museum ; J.
336		Wiley, London: Chichester, England ; New York :.

337	9.	Chatterjee, A., Y. Y. Cui, H. L. Yang, A. Collmer, J. R. Alfano, and A. K.
338		Chatterjee. 2003. GacA, the response regulator of a two-component system, acts
339		as a master regulator in <i>Pseudomonas syringae</i> pv. tomato DC3000 by controlling
340		regulatory RNA, transcriptional activators, and alternate sigma factors. Mol.
341		Plant-Microbe Interact. 16:1106-1117.
342	10.	Danhorn, T., and C. Fuqua. 2007. Biofilm formation by plant-associated
343		bacteria. Annu. Rev. Microbiol. 61:401-422.
344	11.	Febvay, G., B. Delobel, and Y. Rhabe. 1988. Influence of amino acid balance on
345		the improvement of an artificial diet for a biotype of Acyrthosiphon pisum
346		(Homoptera:Aphididae). Can. J. Zool. 66:2449-2453.
347	12.	ffrench-Constant, R. H., and N. R. Waterfield. 2006. Ground control for insect
348		pests. Nat. Biotech. 24:660-661.
349	13.	Gardel, C. L., and J. J. Mekalanos. 1996. Alterations in Vibrio cholerae
350		motility phenotypes correlate with changes in virulence factor expression. Infect.
351		Immun. 64: 2246-2255.
352	14.	Grenier, A. M., G. Duport, S. Pages, G. Condemine, and Y. Rahbe. 2006. The
353		phytopathogen Dickeya dadantii (Erwinia chrysanthemi 3937) is a pathogen of
354		the pea aphid. Appl. Environ. Microbiol. 72:1956-1965.
355	15.	Hampton, R. O., A. Jensen, and G. T. Hagel. 2005. Attributes of bean yellow
356		mosaic potyvirus transmission from clover to snap beans by four species of aphids
357		(Homoptera: Aphididae). J. Econ. Entomol. 98:1816-1823.

print
μ
ahead
online
published
pts /
Acce
\ge

-

358	16.	Hirano, S. S., L. S. Baker, and C. D. Upper. 1996. Raindrop momentum
359		triggers growth of leaf-associated populations of Pseudomonas syringae on field-
360		grown snap bean plants. Appl. Environ. Microbiol. 62:2560-2566.
361	17.	Hirano, S. S., and C. D. Upper. 2000. Bacteria in the leaf ecosystem with
362		emphasis on Pseudomonas syringae - a pathogen, ice nucleus, and epiphyte.
363		Microbiol. Mol. Biol. Rev. 64:624-653.
364	18.	Kennedy, J. S., and H. L. G. Stroyan. 1959. Biology of aphids. Annu. Rev.
365		Entomol. 4: 139-160.
366	19.	Lilley, A. K., R. S. Hails, J. S. Cory, and M. J. Bailey. 1997. The dispersal and
367		establishment of pseudomonad populations in the phyllosphere of sugar beet by
368		phytophagous caterpillars. FEMS Microbiol. Ecol. 24:151-157.
369	20.	Lindeberg, M., C. R. Myers, A. Collmer, and D. J. Schneider. 2008. Roadmap
370		to new virulence determinants in Pseudomonas syringae: Insights from
371		comparative genomics and genome organization. Mol. Plant-Microbe Interact.
372		21: 685-700.
373	21.	Lindow, S. E., and M. T. Brandl. 2003. Microbiology of the phyllosphere. Appl
374		Environ. Microbiol. 69:1875-1883.
375	22.	Lindow, S. E., and J. H. Leveau. 2002. Phyllosphere microbiology. Curr. Opin.
376		Biotechnol. 13:238-243.
377	23.	Mercier, J., and S. E. Lindow. 2000. Role of leaf surface sugars in colonization
378		of plants by bacterial epiphytes. Appl. Environ. Microbiol. 66:369-374.

Miles, P. W. 1999. Aphid saliva. Biol. Rev. 74:41-85. 379 24.

380	25.	Monier, J. M., and S. E. Lindow. 2003. Differential survival of solitary and
381		aggregated bacterial cells promotes aggregate formation on leaf surfaces. Proc.
382		Natl. Acad. Sci. U. S. A. 100:15977-15982.
383	26.	Monier, J. M., and S. E. Lindow. 2004. Frequency, size, and localization of
384		bacterial aggregates on bean leaf surfaces. Appl. Environ. Microbiol. 70:346-355.
385	27.	Monier, J. M., and S. E. Lindow. 2005. Spatial organization of dual-species
386		bacterial aggregates on leaf surfaces. Appl. Environ. Microbiol. 71:5484-5493.
387	28.	Nault, B. A., D. A. Shah, H. R. Dillard, and A. C. McFaul. 2004. Seasonal and
388		spatial dynamics of alate aphid dispersal in snap bean fields in proximity to alfalfa
389		and implications for virus management. Environ. Entomol. 33:1593-1601.
390	29.	Ng, J. C. K., and B. W. Falk. 2006. Virus-vector interactions mediating
391		nonpersistent and semipersistent transmission of plant viruses. Annu. Rev.
392		Phytopathol. 44:183-212.
393	30.	Ng, J. C. K., and K. L. Perry. 2004. Transmission of plant viruses by aphid
394		vectors. Mol. Plant Pathol. 5:505-511.
395	31.	Ochman, H., A. S. Gerber, and D. L. Hartl. 1988. Genetic applications of an
396		inverse polymerase chain reaction. Genetics 120:621-623.
397	32.	Sabaratnam, S., and G. A. Beattie. 2003. Differences between Pseudomonas
398		syringae pv. syringae B728a and Pantoea agglomerans BRT98 in epiphytic and
399		endophytic colonization of leaves. Appl. Environ. Microbiol. 69:1220-1228.
400	33.	Snyder, W. E., D. W. Tonkyn, and D. Kluepfel. 1998. Insect-mediated dispersal
401		of the rhizobacterium Pseudomonas chlororaphis. Phytopathol. 88:1248-1254.

AEM Accepts published online ahead of print

402	34.	Sohi, S. S., and K. G. Swenson. 1964. Pea aphid biotypes differing in bean
403		yellow mosaic virus transmission. Entomol. Exp. Appl. 7:9-14.
404	35.	Swenson, K. G. 1954. Aphid transmission of a bean yellow mosaic virus. J. Econ.
405		Entomol. 47: 1121-1123.
406	36.	Swenson, K. G. 1957. Transmission of bean yellow mosaic virus by aphids. J.
407		Econ. Entomol. 50: 727-731.
408	37.	Upper, C. D., S. S. Hirano, K. K. Dodd, and M. K. Clayton. 2003. Factors that
409		affect spread of <i>Pseudomonas syringae</i> in the phyllosphere. Phytopathol.
410		93: 1082-1092.
411	38.	Wilson, M., and S. E. Lindow. 1994. Inoculum density-dependent mortality and
412		colonization of the phyllosphere by Pseudomonas syringae. Appl. Environ.
413		Microbiol. 60: 2232-2237.
414	39.	Wilson, M., and S. E. Lindow. 1992. Relationship of total viable and culturable
415		cells in epiphytic populations of Pseudomonas syringae. Appl. Environ.
416		Microbiol. 58: 3908-3913.
417	40.	Woolhouse, M. E. J., L. H. Taylor, and D. T. Haydon. 2001. Population
418		biology of multihost pathogens. Science 292:1109-1112.
419		
420		
421		
422		
423		
424		

AEM Accepts published online ahead of print

425 Figure Legends

426	Figure 1. Growth of bacteria in the aphid. Titres of pathogenic <i>P. syringae</i> pv. syringae
427	B728a, non-pathogenic P. syringae pv. tomato DC3000, and the fliL mutant in the pea
428	aphid following an initial feeding for 14 hours on artificial diet containing bacteria. All
429	aphids feeding on wildtype P. syringae pv. syringae B728a were dead within 36 hours.
430	Control aphids were fed 10mM MgSO ₄ .
431	
432	Figure 2. Genomic comparison of toxin complex (tc) genes between pathogenic <i>P</i> .
433	syringae pv. syringae B728a and non-pathogenic P. syringae pv. tomato DC3000. In P.
434	syringae pv. tomato DC3000, the Psy4205 homolog is disrupted by two IS elements,
435	whereas the Psy4034 homolog contains a frameshift mutation. Gene knockouts of
436	Psy4205 and Psy4034 in P. syringae pv. syringae B728a were achieved through
437	homologous recombination of a gene fragment having a trp terminator (stem-loop
438	structure). The corresponding Photorhabdus luminescens W14 homologs are indicated
439	below each gene.
440	
441	Figure 3. Motility assays of <i>fliL</i> mutant. A. Colony morphology of wildtype <i>P. syringae</i>
442	pv. syringae B728a and <i>fliL</i> mutant on 0.3% LB agar. B. Comparison of swarming
443	ability of wild type and $fliL$ mutant on 0.4% LB agar. Tentacle-like extensions projecting
444	outward from the growing edge of colonies were seen only on plates containing wildtype
445	B728a.

446

- 447 Figure 4. Model of aphid-mediated dissemination of *P. syringae*. Aphids may become
- 448 infected after feeding on plant tissues colonized with epiphytic populations of *P. syringae*
- 449 (yellow dots). As bacterial titres in infected aphids increase, droplets of bacteria-laden
- 450 honeydew inoculate the plant surface, with movement of aphids to other hosts resulting in
- 451 the dissemination of *P. syringae* and plant disease.

Figure 1

Figure 2

Figure 3

Figure 4

J

72

48

