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ABSTRACT Unlike eukaryotes, which often recruit duplicated genes into existing protein–
protein interaction (PPI) networks, the low levels of gene duplication coupled with the high
probability of lateral transfer of novel genes alters the manner in which PPI networks can evolve in
bacteria. By inferring the PPIs present in the ancestor to contemporary Gammaproteobacteria, we
were able to trace the changes in gene repertoires, and their consequences on PPI network evolution,
in several bacterial lineages that have independently undergone reductions in genome size and
genome contents. As genomes degrade, virtually all multi-partner proteins have lost interactors;
however, the overall average number of connections increases due to the preferential elimination of
proteins that interact with only one other protein partner. We also studied the effect of lateral gene
transfer on PPI network evolution by analyzing the connectivity of genes that have been gained
along the Escherichia coli lineage, as well as those acquired genes subsequently silenced in Shigella
flexneri, since diverging from the gammaproteobacterial ancestor. The situation in PPI networks, in
which newly acquired genes preferentially attach to the hubs of the network, contrasts that observed
in metabolic networks, which evolve by the peripheral gain and loss of genes, and in regulatory
networks, in which high connectivity increases the propensity of loss. J. Exp. Zool. (Mol. Dev. Evol.)
308B:97– 103, 2007. r 2007 Wiley-Liss, Inc.
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Genome-scale analyses of the functional links
among proteins have revealed that interaction
networks are essentially scale-free, with relatively
few proteins (termed ‘‘hubs’’) that are highly
connected and interacting with numerous other
proteins but with the majority having few inter-
acting partners (Albert et al., 2000; Jeong et al.,
2001; Wuchty, 2004). This topology causes biolo-
gical networks to be tolerant of perturbation, such
that the loss or inactivation of most genes will
have little effect on organismal fitness. The
protein–protein interaction (PPI) networks re-
solved for yeast, worm and Drosophila are orga-
nized similarly; however, there are cumulatively
many differences among these organisms in the
numbers and connections of homologous proteins
(Matthews et al., 2001; Hahn and Kern, 2005;
Sharan et al., 2005; Gandhi et al., 2006; Li et al.,
2006). These differences and the robustness of
interaction networks have been ascribed to the
combination of two factors: the inherent nature of

a scale-free network topology, which is robust
relative to the elimination of most individual
proteins (Albert et al., 2000; Jeong et al., 2001;
Maslov and Sneppen, 2002), and the recruitment
of paralogs, which are common in most eukaryotic
genomes (Wagner, 2000; Gu et al., 2003; Pereira-
Leal et al., 2006).

Unfortunately, this model of PPI network
restructuring cannot account for the major trends
observed in the evolution of bacterial genomes.
Most bacterial genomes contain few paralogs
(Hooper and Berg, 2003; Lerat et al., 2005), which
might limit the extent to which newly generated
proteins can join modules or displace existing
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proteins. Additionally, lateral gene transfer can
enrich the proteome with proteins having no
functional, structural or sequence similarity to
those already encoded by the genome (Daubin and
Ochman, 2004; Pál et al., 2005). Moreover, many
bacterial lineages have undergone a massive
reduction in genome size caused by deletions that
can sometimes span hundreds of genes and result
in large variation in the genome contents of
related strains (Moran, 2002; Nilsson et al.,
2005). These features imply that the numbers
and types of interactions, although encoded by
homologous sets of genes, will be inconsistent
across bacterial genomes and can change in ways
that differ from those observed in eukaryotic
genomes.

In this paper, we ask how the large-scale
degradation of bacterial genomes has affected the
architecture of PPI networks. To monitor and
understand the process by which these networks
adjust to severe changes in the numbers of
potential protein interactors, we focus on the
Gammaproteobacteria because this class boasts
some of the most extreme reductions in genome
size and gene contents, with sequenced members
ranging from 160 to over 7,000 kb. Phylogenetic
analyses and comparisons of gene repertoires both
indicate that genome size reduction occurred
independently in several proteobacterial lineages
(Ochman, 2005). In addition, complete sequences
are available for genomes at more intermediate

stages of degradation, in which genomes are less
reduced in size and can also harbor high numbers
of pseudogenes. Our results show that PPI net-
works in bacteria evolve in a way that is distinct
from both the PPI networks in eukaryotes and the
metabolic and regulatory networks in bacteria.

MATERIALS AND METHODS

Sequence data

We used the complete genome sequences avail-
able in GenBank (ftp://ftp.ncbi.nih.gov/genomes/
Bacteria/) of the following bacteria (for accession
numbers, see Fig. 1): Buchnera aphidicola Sg,
Candidatus Blochmannia floridanus, Escherichia
coli MG1655, Haemophilus influenzae Rd, Shigel-
la flexneri 2a_311, Sodalis glossinidius morsitans,
Vibrio cholerae N16961, Salmonella enterica
Typhimurium LT2, Wigglesworthia glossinidia
brevipalpis, Yersinia pestis CO92. Pseudogenes in
Sodalis were identified by Toh et al. (2006), and
those in Shigella were identified by Jin et al.
(2002) and by Lerat and Ochman (2004).

Identification of orthologs

All-vs.-all BLAST searches were performed with
annotated proteins in E. coli and each of the other
genomes listed above. A pair of genes was regarded
as a pair of putative orthologs if they were
reciprocal best hits with more than 40% similarity
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Fig. 1. Characteristics of gammaproteobacterial genomes and of the reconstructed ancestor of these species. Tree topology
adapted from those presented in Gil et al. (2003) and Herbeck et al. (2005).
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in sequence in a global alignment and if the
difference in their lengths was less than 20% of
the overall size of the gene. The gene contents of
the gammaproteobacterial ancestor follows that
reconstructed and described by Moran and Mira
(2001). We determined which ancestral genes were
retained in each of the genomes considered based
on their orthology to the corresponding gene in
E. coli MG1655.

Network data

Interaction networks were based solely on the
PPIs determined for E. coli by Butland et al.
(2005). The address of each gene/protein assayed
was identified in the latest release of the E. coli
chromosome available in Genbank, and subse-
quently mapped onto the reconstructed ancestral
genome. All redundant links from the list of
pairwise PPIs were removed, such that the
interactions A to B and B to A were only
considered once. Naturally, it is assumed that
if the orthologs of E. coli genes are present in the
ancestral or contemporary genomes that the
interactions among orthologs are the same as
those determined experimentally for E. coli. Given
that orthologs largely maintain the same function
in very divergent organisms, the interactions
among conserved proteins are very likely to be
conserved. Data on regulatory networks were
derived from RegulonDB (Salgado et al., 2006;
http://regulondb.ccg.unam.mx/index.html), which
contains the transcription factors/gene interaction
network assembled for E. coli. Because regulatory
networks are directed graphs with regulators as
source nodes, we were able to distinguish regula-
tors from regulated elements. Data analyses and
graphing were performed with in-house scripts
and Pajek (de Nooy et al., 2005; http://vlado.fm-
f.uni-lj.si/pub/networks/pajek/). All lists of the
orthologs detected in each genome as well as
information on interaction networks are available
upon request from the authors.

RESULTS AND DISCUSSION

A gene’s propensity for loss is dependent
on its connectivity

The connections among proteins encoded by two
slightly reduced (�4,000 genes; Shigella flexneri,
Y. pestis), two moderately reduced (�2,000 genes;
Sodalis glossinidia, H. influenzae) and three
highly reduced endosymbiont (o1,000 genes;
Buchnera aphidicola, Blochmannia floridanus,

W. glossinidia) genomes (Fig. 1) were derived
from the protein interactions resolved experimen-
tally for E. coli by tandem affinity purification
(Butland et al., 2005). Because contemporary
E. coli is not the ancestor to these species, we
consider only those proteins inferred to be present
in the common ancestor (Moran and Mira, 2001),
thereby excluding those E. coli genes acquired
after these lineages diverged. The genome of the
reconstructed ancestor genome contains 57% of
the 4,288 genes; but because the proteins analyzed
were not selected at random (Butland et al., 2005),
70% of the 1,339 interacting proteins and 86% of
the 5,868 interactions (including self interactions
but removing redundant links) detected in E. coli
are present in the ancestor.

The endosymbiont genomes are approximately
85% smaller than that of E. coli, and their current
gene repertoires have been static for millions of
years due to their long-term relationships with
particular insect hosts (Tamas et al., 2002). Each
of the endosymbionts has retained about 30%,
albeit different sets, of the tested genes present in
the ancestor, and there are significantly higher
numbers of connections per protein in endosym-
bionts (11.4 vs. 10.1) despite the reduced number
of potential interactors. Although the most highly
connected proteins have lost substantial numbers
of links in these reduced genomes, this difference
is due primarily to the removal of genes that
encode proteins with only one interacting partner
(Fig. 1, Fig. 2d,e). For example, in Buchnera,
single-partner proteins are five times less likely
to be retained than are proteins with more than
15 partners.

Only 17 (5%) of the single-partner proteins
remain in all three endosymbiont genomes.
Although this seems to be a low number, it is
more than the 11 expected by chance if genome
reduction occurred independently in each lineage.
The retention of this particular set of single-
partner proteins is most likely due to selection for
their individual functions: in all but two cases
(acpS, dut), the genes are maintained in all other
gammaproteobacterial genomes considered, and
10 have been shown to be essential in E. coli
(Gerdes et al., 2003). In contrast to the situation
with single-partner proteins, higher proportions of
multiple-partner proteins—even those with only
two partners—are retained, supporting the view,
originally developed for eukaryotes (Jeong et al.,
2001; Krylov et al., 2003; Wuchty, 2004; Campillos
et al., 2006), that the contribution of a protein to
fitness and its evolutionary conservation increase
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with its number of interacting partners. Still, over
half of the proteins with 420 partners have been
eliminated from at least one symbiont genome (74/
142), and 24% are absent from all endosymbionts.

When considering the highly reduced genomes,
virtually all modules of all sizes within the PPI
interaction network have lost constituents. As
might be expected, proteins that interact with

larger numbers of proteins in the ancestor still
tend to be those with more partners in reduced
genomes. However, those proteins with 410
interactions lose, on average, a significantly great-
er percentage of partners than do proteins with
5–10 partners (39% vs. 28%), implying that highly
connected proteins are better buffered against the
loss of individual protein partners.

A. Ancestor
    + E. coli

B.  Shigella

C.  Sodalis

D.  Buchnera

E.  Blochmannia

Additional genes in E. coli
Genes present in Ancestor

Pseudogenes

Links involving :

Fig. 2. Protein–protein interaction (PPI) networks in reduced and degraded gammaproteobacterial genomes. (A) Blue edges
denote interactions among proteins present in the reconstructed ancestor. Proteins are arranged into five rings according to
their numbers of interactions, with the innermost ring containing those proteins with the most connections and the outermost,
the least. Gray edges denote interactions encoded by genes acquired by E. coli since it diverged from the ancestor: these
constitute the ring outside of the network of the ancestor. (B, C) PPI networks in the reduced genomes of Shigella flexneri and
Sodalis glossinidia, respectively. Red edges denote interactions involving a pseudogene. (D, E) PPI networks of the highly
degraded genomes of the endosymbionts Buchnera aphidicola and Blochmannia floridanus, respectively.
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How gene inactivation trims PPI networks

Whereas the current genomes of obligate en-
dosymbionts are well-honed and stable, glimpses
into the process of genome reduction are captured
in the genomes of the more recent associates of
eukaryotes. Among the species considered, an
extreme case of genome degradation is provided
by the facultative symbiont Sodalis glossinidia,
in which a quarter of its 4.2 Mb genome consists
of pseudogenes (Toh et al., 2006). The current
population of Sodalis pseudogenes corresponds to
proteins that have, on average, only 3.7 partners
in the ancestor, and significantly more ancestral
proteins with single partners have been inacti-
vated. When compared to those proteins already
jettisoned from the Sodalis genome, these pseu-
dogenes average 15% fewer links, and a lower
proportion are single-partnered. This decrease in
the number of pseudogene interactors results
from the changes in the number of potential
interactors as the genome shrinks. Although
genome reduction has occurred independently in
Sodalis and the three endosymbionts, virtually all
of the genes that are removed or inactivated in
Sodalis have also been eliminated from each of the
endosymbiont genomes.

The effects of lateral gene transfer
on PPI networks

In contrast to the attrition of interaction net-
works resulting from gene degradation and loss,
examining the features of the E. coli proteins
gained since its divergence from the reconstructed
ancestor provides insights into the manner in
which bacterial proteins join interaction networks.
In eukaryotes, new proteins arise primarily
through gene duplications and immediately obtain
the same interacting partners as their paralog
upon origination. But because most new genes in
bacterial genomes originate by lateral transfer and
produce proteins that are largely unique to the
genome, there are usually no pre-established
interactions that can be readily recruited from a
paralog at the moment of transfer.

Of the nearly 400 E. coli proteins for which PI’s
were analyzed and that are not present in the
ancestor, 70% (277/397) have only one interacting
partner, nearly double the proportion of single-
partner proteins in the ancestor. This situation is
very different from the one in eukaryotes where
gene duplication leads to groups of paralogs that
have higher connectivity than average genes
(Wagner, 2001). The majority of these single-

partnered acquired proteins interact directly with
existing hubs, i.e., ancestral proteins with over 10
interactions, indicating that they are most often
integrated into established networks as opposed to
offering entirely new functions. This result paral-
lels that observed for the recruitment of acquired
genes into E. coli metabolic networks (Light et al.,
2005; Pál et al., 2005). However, metabolic net-
works evolve by attachment to their periphery,
whereas new PPIs evolve by preferential attach-
ment to hubs. Indeed, only about 20% (64/277) of
the new single-partner proteins interact only with
another acquired protein, but surprisingly, the
proportion of links formed by new proteins with
other acquired proteins increases with the number
of interactions (28%, 32% and 50%, for the two-,
three- and four-partnered proteins, respectively).
At first glance, this seems counterintuitive; how-
ever, new proteins with multiple partners are
often acquired as part of a cluster of functionally
related genes (e.g., operons) whose products
physically interact (Dandekar et al., ’98).

Losing acquired genes

Having shared much of its evolutionary history
with E. coli, Shigella flexneri has a very similar
gene repertoire but contains hundreds of recently
derived pseudogenes that are still functional in
E. coli (Jin et al., 2002). These nonfunctional
proteins in Shigella can provide insights into (1)
the initial stages of genome degradation and (2)
the incorporation and removal of acquired genes
from PPI networks. Among those proteins ac-
quired by E. coli, since it diverged from the
reconstructed ancestor, over 10% are presently
encoded by pseudogenes in Shigella. With regard
to their numbers of interaction partners, the
genes that are silenced in Shigella constitute a
random sample of those acquired; i.e., most (32/46)
encode single-partner proteins whose sole part-
ners possess a large number of links ( �x ¼ 26). This
result runs counter to the prediction that intro-
duced genes acquiring large numbers of protein
interactions are more likely to be retained.

Since acquired sequences rarely encode house-
keeping functions, pseudogenes are expected to
predominate among acquired sequences. However,
30 of the 943 ancestral genes tested for interac-
tions have also become pseudogenes in Shigella
(and are still functional and were tested for PPI in
E. coli). The ancestral genes that became inacti-
vated in Shigella do not represent a random
subset of the proteins present in the ancestor: on
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average, they have significantly fewer interacting
partners (4.4 vs. 10.1), and each is missing in at
least one of the other gammaproteobacterial
genomes considered.

Expansion and contraction of bacterial
interaction networks

The genome variation within the Gammaproteo-
bacteria, as caused by high levels of gene acquisi-
tion in some taxa and massive gene erosion in
others, has allowed us to monitor the process by
which PPI interaction networks grow and shrink
over evolutionary timescales. Although all biolo-
gical networks display a similar scale-free topology
(Barabási and Albert, ’99; Wagner and Fell, 2001;
Albert, 2005), changes to the contents and
structure of PPI networks are not the same as
those observed in other types of networks. In
contrast to PPI networks, the components of
bacterial metabolic networks tend to attach and
detach from the periphery of networks, and
essential metabolic functions are not more highly
connected and do not have larger numbers of
interactors (Pál et al., 2005, 2006; Vitkup et al.,
2006).

In contract to PPI and metabolic network, the
changes within regulatory networks in response to
genome degradation are even more radical. We
reconstructed the regulatory network of the
gammaproteobacterial ancestor (using E. coli

homologs of regulatory information in RegulonDB
(Salgado et al., 2006)) and carried out analyses
analogous to those we performed for PPI. In the
most reduced symbiont genomes, virtually no
regulatory network remains (Fig. 3), possibly
because precise modulation of gene expression is
not needed when residing in a stable host
environment (Wilcox et al., 2003). Of the 84
regulators present in the ancestor, only four
remain in Buchnera (nexpected 5 18; Po0.05), and
their connectivity is not significantly different
from the average regulator. Regulated elements,
which are the least connected elements in the
regulatory network, are more conserved than
regulators (19% vs. 5%; Po0.001). Whereas higher
connectivity within PPI networks protects a gene
from being eliminated, high connectivity in the
regulatory network increases the gene’s suscept-
ibility to loss. Hence, in spite of the apparent
topological similarities of biological networks, our
analyses reveal that process of genome erosion has
altered different types of networks in distinctive
ways.
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