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For more than a decade, the study of bacterial evolution has been dominated 
by the comparative analysis of nucleotide sequences within and among 
species. This approach, combined with the characterization of extensive 
regions of the chromosome by pulsed-field gel electrophoresis, has led to new 

insights into the dynamics of bacterial genomes. 
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Introduction 

Variation in bacterial genomes can be mediated by 
any number of  mechanisms, but the resulting changes 
fall into three general classes: point nmtations, which 
include nucleotide substitutions and frameshift nmta- 
tions; homologous exchange; and chromosomal re- 
arrangements, involving the acquisition, deletion and 
reorganization of segments of  the genome. The first 
two types of  alteration entail changes to the existing 
genetic information, and the majority of  evolutionary 
studies have examined variation at this level of ge- 
netic organization through comparisons of  homologous 
regions within and among species. 

The most widespread application of  this comparative 
approach has been to resolve phylogenetic relationships 
among bacterial species. Although these analyses do 
not yield much information about the evolution of  
bacterial genomes per se, they provide the framework 
necessary for investigating other biological traits. For 
example, the base compositions of  bacterial genomes 
vary widely across taxa, with guanine plus cytosine 
(G+C) contents ranging from 25% to 75%; and when 
examined in a phylogenetic context, very broad groups 
of  related species have similar G+C contents, suggesting 
that genomic base composition is principally the result of 
mutational biases rather than a response to environmental 
factors [1,2",3"]. 

The use of  sequence information to reconstruct the 
phylogenetic relationships among bacteria relies on the 
assumption that a particular molecule has not been 
subject to genetic exchange--horizontal  processes tend 
to homogenize bacterial species and obscure the true 
genealogy of a lineage. The relative role of  point 
mutations versus recombination in the generation of  
allelic variation has been a major focus of  research on 
the population genetics of bacteria, and studies reported 
over the past year based on comparative sequence analysis 
and low-resolution physical maps have improved our 

understanding of  the factors generating diversity in 
bacterial genes and genomes. 

Recombination in natural populations 

On the basis ofelectrophoretically detectable variation at 
polymorphic enzyme loci, natural isolates of Escherichia 
coli and Salmonella enterica have been regarded as 
essentially clonal and, for the most part, unaffected by 
recombination. Despite very high levels of genie diver- 
sity, strains of  E. coli having particular combinations of  
alleles over loci (nmltilocus genotypes) were repeatedly 
recovered from unrelated nlammalian hosts from widely 
separated geographic locations [4]; these clonal lineages 
appeared to be fairly stable over time [5], indicating 
that the rate of  recombination in natural populations is 
very low. Analyses of  recent nucleotide sequence data 
advocate a slightly different, though not inconsistent, 
view of  evolution within natural populations of  enteric 
bacteria, emphasizing the role of  homologous exchange 
in generating variation among strains [6,7",8"']. 

Recombination events occurring over an evolutionary 
timescale can be resolved phylogenetically. Because gene 
transfer will alter the ancestry of  a particular region of  
the genome, incongruities in the branching orders or 
relationships of  organisms based on different genes (or 
segments of  genes) provide evidence of recombination, 
an approach most recently applied to enteric bacteria 
by Guttman and Dykhuizen [9"] and by Nelson and 
Selander [10"]. Genealogies based on each of  four loci 
situated within a 100kb segment of the E. coli chro- 
mosome exhibited several inconsistencies attributable 
to recombination events, and allelic divergence due 
to recombination was an order of  magnitude greater 
than that caused by point mutations [9"]. Nelson 
and Selander [10"] determined the nucleotide sequence 
of  6-phosphogluconate dehydrogenase (gnd)--a highly 
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variable locus when assayed by protein electrophore- 
s i s a l  or 87 strains typed to five genera of  enteric 
bacteria. On the basis o fgnd  sequences, certain isolates 
of E. coli emerged as being most closely related to 
Citrobacter or Klebsiella, a phylogeny not supported by 
other housekeeping genes or any alternate schemes 
of classification. Recombination at the gnd locus is 
presumably the result of  its close proximity to genes 
that mediate antigenic variation, which recombine in 
response to strong diversifying selection [10% 11"]. 

Patterns of evolution across the chromosome 

As additional genes are sequenced from these taxa, 
it has become possible to examine the rates and 
patterns of  evolution across genes, and even along 
the entire bacterial chromosome. In comparisons of  
homologous genes from E. coli K-12 and S. enterica 
serovar Typhimurium LT2, rates of  synonymous substi- 
t u t i o n s - w h i c h  should be roughly the same in every 
gene, as these silent changes are presumably under no 
selective constraints--spanned nearly two orders of  
magnitude. By plotting the synonymous substitution 
rates against an index specifying the degree of  bias in 
codon usage for each gene, Sharp and Li [12] found 
that highly expressed genes - - those  employing a very 
restricted set of  synonymous codons--displayed the 
lowest rates of  synonymous site evolution. 

Not all o f  the variation in synonymous substitution 
rates can be explained by codon usage patterns, 
however: Sharp et al. [13] subsequently discovered that 
synonymous substitution rates increase with distance 
from the replication origin, an effect attributed to the 
reduced incidence of  recombinational repair near the 
terminus, as these sequences remain in single copy for 
a greater portion of  the cell cycle. A similar explanation 
has been invoked to account for the slight decrease in 
G+C content in genes near the replication ternfinus, 
whereby these late replicating sequences are repaired by a 
mechanism that leads to the preferential incorporation of  
adenine rather than by a recombinational process which 
requires a homologous strand [14]. 

(phoN) in Salmonella enterica is confined to very few 
enteric genera, has a G+C content of  4Y'/, (which is 
much lower than that of  the Salmonella chromosome, 
which averages 52%) and resides downstream of  a 
sequence with high levels ofsinfilarity to the oriT region 
of  incFII plasnfids, all of  which suggest lateral transfer 
from a low G+C organism in a plasmid-mediated event 
[16]. 

Using these criteria to infer the ancestry of  a gene, it 
is possible to analyse the regions sequenced from a 
particular species and to estimate the proportion of  the 
chromosome that originated through horizontal transfer. 
By partitioning the genes of  E. coli into three classes on 
the basis of  their patterns of codon usage, M6digue et 
al. [17] hypothesized that one class, comprising 16% of 
the sequenced genes, arose through horizontal transfer. 
Similarly, approximately 10% of  the sequenced genes 
from Typhimurium LT2 have features which depart from 
the prevalent characteristics of  the genome [3°]. These 
values may underestimate the actual number of  acquired 
genes because sequences are apt to be transferred from 
closely related organisms of similar base compositions 
and codon usage patterns. 

On the basis of the amount of  gene transfer exposed 
through the analyses of  nucleotide sequences, the chro- 
mosomes of  enteric bacteria can perhaps be considered 
mosaics, with portions introduced from diverse sources. 
However, the collinearity of  the genetic maps, as well as 
the correspondence between the sizes and organization 
of  the E. coli and S. enterica chromosomes, have led to 
the view that the bacterial genomes are evolutionarily 
conserved. But despite the overall similarities, when 
the linkage maps of  E. coli K12 and S. enterica serovar 
Typhimurium LT2 are aligned, there are several genetic 
rearrangements, including an inversion encompassing 
10% of  the chromosome, and some 30 regions over 25 kb 
in l eng th - - t e rmed  'loops' - -  that are present in only 
one of  the species [18,19]. Genes that confer several of 
the traits used to distinguish E. coli and S. enterica, such as 
the utilization of  lactose and citrate, reside on these loops 
[19]; recently, Mills et al. [20 °] defined a 40kb region in 
Typhimurium LT2 that is not present in E. coli K12 and 
contains at least 20 genes necessary for the the invasion 
of  mannnalian epithelial cells by sahnonellae. 

Chromosomes as mosaics 

So far, we have only considered the effects of  re- 
combination on allelic diversity; however, gene transfer 
also introduces novel regions to bacterial chromosomes. 
Various methods are used to detect segments of  the 
chromosome acquired through gene transfer: restricted 
phylogenetic distribution, atypical base composition 
and codon usage pattern, or an association with 
translocatable sequences; a particular region will often 
manifest several of these properties [6,15]. For example, 
the gene encoding a non-specific acid phosphatase 

Physical structure and mapping 

With the advent of  pulsed-field gel electrophoresis 
(PFGE), it is now possible to directly assess the 
physical size, structure and organization of  bacterial 
chromosomes, even in strains not amenable to genetic 
manipulation. The impact of  PFGE on bacterial genetics 
and genome analysis has been the subject of  several 
recent reviews [21-23], so we have only considered 
studies that pertain to the evolution of  enteric bacterial 
genomes. 
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PFGE was first applied to enteric bacteria by Smith et 
al. [24], who established a low-resolution physical map 
of  NotI  restriction sites in E. colt K-12 strain EMG2. 
Since then, several other laboratory derivatives of E. colt 
K-12 have been mapped, revealing numerous changes 
in the chromosome structure, some of  which had not 
been detected by genetic methods [25]. Most of these 
involve small changes, and a disproportionate number 
occurred near the replication terminus, suggesting an 
enhanced high rate of recombination in this region 
[25,26"]. Although PFGE is useful for detecting variation 
among laboratory strains of  E. colt, its application to 
natural and clinical isolates has principally been linfited 
to epidenfiological tracing of  pathogenic strains [27-30]. 

PFGE has most recently been employed to exanfine 
genome structure and evolution within a species. In this 
regard, the most comprehensive studies have examined 
serovars of  S. enterica by comparing low-resolution 
physical maps of  the serovars Enteritidis [31], Paratyphi 
[32], Typhi [33°•], and Typhimurium [31,34,35%36]. 
Initially, these studies substantiated the overall simi- 
larities in the size and organization the E. colt and 
S. enterica chromosomes: estimates of chromosome 
length in E. colt K-12 are 4.6Mb compared with 
4.7-4.9 Mb for serovars of S. enterica [34]. With regard 
to the conservation of gene order within S. enterica, 
some serovars contain large-scale changes relative to 
Typhimurium L T 2 - - f o r  example, serovar Enteritidis 
harbors an inversion containing the terminus and 
involving 18% of  the chromosome. This inversion is 
congruent with one detected from comparisons orE.  colt 
K-12 and Typhimurium LT2, but it spans a larger 
region [31]. The endpoints of the Enteritidis inversion 
are situated in a non-divisible zone, as ascertained in 
E. a~li [37], where the replication lbrk pauses after 
moving through the terminus. (Non-divisible zones 
are regions flanking the terminus that are refractory 
to genetic inversions.) In experimental populations, 
inversion endpoints have never been mapped to these 
non-divisible zones suggesting that such inversions have 
occurred by mechanisms other than those operating in 
the experimental populations [31]. 

One rare-cutting restriction enzyme, I -CeuI ,  has been 
used extensively for the characterization of  Sahnonella 
chromosonles [31]. This enzyme has a 26 bp recognition 
sequence occurring in rP,,NA operons of bacterial 
and organelle genomes. This homing endonuclease has 
seven sites in the E. colt and Salntonella chronlosomes, 
corresponding to number of  rm genes. Although the 
number and distribution of  I -CeuI  restriction sites are 
well conserved among the chromosomes of different 
serovars of  S. enterica, differences in fragment lengths 
have resulted from the insertions or deletions of  regions 
in independent lineages. 

There are some notable exceptions to the conserved 
distribution of  rP,.NA operons in S. enterica, particu- 
larly in Typhi and Paratyphi A and C [31,34]. The 
chronlosome of  Typhi Ty2 has undergone substantial 

reorganization, attributable to recombinational events 
among rKNA operons. Closely-related clones of  Typhi 
have a surprisingly high degree of  variation in rrn 
restriction patterns [38,39], which may correspond to 
the chromosome rearrangements reported by Liu et al. 
[34]. This contrasts the situation in Typhimurium, where 
15 of  17 wild-type strains displayed identical I -CeuI  
restriction patterns and fragment lengths [35°]. 

Employing PFGE, we have examined the variation in 
genome size among some dozen strains of E. colt from 
natural sources [40"]. Restriction fragment patterns for 
two rare-cutting enzymes, BlnI and Not l ,  were highly 
variable among isolates, and estimates of  genome size 
ranged from roughly 4650 kb to 5300 kb, which is several 
hundred kb larger than the variation detected between 
the E. colt K-12 and S. enterica serovar Typhinmrium 
LT2. Differences in genome size increase with the 
evolutionary genetic distance (as assessed by nmltilocus 
enzyme electrophoresis), that is, more closely related 
strains trend to have similar genome sizes. Although 
bacterial genomes are commonly thought to be subject 
to streamlining to assure rapid rates of  replication, there 
was no correlation among these natural isolates of E. colt 
between overall genome size and growth rates in either 
minimal or nutrient media [40°]. 

Conclusions 

Despite the similarities of the E. colt K-12 and S. enterica 
serovar Typhiinurium LT2 chromosomes, and the fact 
that these species are basically clonal, evidence generated 
over the past year through nucleotide sequencing and 
pulsed-field gel electrophoresis has considerably altered 
our view about the rates and patterns of  evolution 
in enteric bacteria. Recombination within and among 
species has influenced the extent of  genic diversity 
observed at several loci within E. colt and S. enterica, 
and regions introduced through horizontal transfer has 
contributed to large-scale alterations in the structure and 
organization of  bacterial chromosomes. Further research 
will be directed towards resolving the absolute rate 
of these processes and their effects on the long-term 
evolution of  enteric species. 
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