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Summary

Massively parallel pyrosequencing of the small
subunit (16S) ribosomal RNA gene has revealed that
the extent of rare microbial populations in several
environments, the ‘rare biosphere’, is orders of mag-
nitude higher than previously thought. One important
caveat with this method is that sequencing error could
artificially inflate diversity estimates. Although the
per-base error of 16S rDNA amplicon pyrosequencing
has been shown to be as good as or lower than Sanger
sequencing, no direct assessments of pyrosequenc-
ing errors on diversity estimates have been reported.
Using only Escherichia coli MG1655 as a reference
template, we find that 16S rDNA diversity is grossly
overestimated unless relatively stringent read quality
filtering and low clustering thresholds are applied. In
particular, the common practice of removing reads
with unresolved bases and anomalous read lengths is
insufficient to ensure accurate estimates of microbial
diversity. Furthermore, common and reproducible
homopolymer length errors can result in relatively
abundant spurious phylotypes further confounding
data interpretation. We suggest that stringent quality-
based trimming of 16S pyrotags and clustering thresh-
olds no greater than 97% identity should be used to
avoid overestimates of the rare biosphere.

Introduction

Pyrosequencing (Margulies et al., 2005) is one of the
leading technologies supplanting Sanger sequencing for
comparative genomics and metagenomics. One emerg-
ing application is the pyrosequencing of 16S rRNA ampli-
cons (‘16S pyrotags’) to profile the phylogenetic diversity
within microbial communities. [Correction added on 25

September 2009, after first online publication: in the pre-
ceding sentence, 16S rRNA amplicons replaced 16S
rRNA genes.] The large number of reads produced in a
single pyrosequencing run provides unprecedented sam-
pling depth, leading to the conclusion that the rare bio-
sphere, i.e. the tail of the species abundance distribution,
is substantially larger and more diverse than previously
appreciated (Sogin et al., 2006).

One caveat, however, is that the intrinsic error rate of
pyrosequencing could lead to overestimates of the number
of rare phylotypes. Unlike genome sequencing projects in
which sequencing errors can be corrected by assembly
and sequencing depth, each read in a pyrotag analysis is
interpreted as a unique identifier of a community member
and therefore errors will potentially inflate diversity esti-
mates. Sogin and co-workers, appreciating this risk,
invested considerable effort to determine the error rates of
first generation GS20 pyrosequencing using a mixture of
43 reference templates (Huse et al., 2007). They con-
cluded that quality filtering based on the removal of reads
with one or more unresolved bases (N’s), errors in the
barcode or primer sequence, and/or atypically short or long
reads is sufficient to ensure per-base error rates lower than
conventional Sanger sequencing while retaining > 90% of
the reads. Ideally, the number of operational taxonomic
units (OTUs) from their analysis should have been 43;
however, they did not report OTU estimates of their syn-
thetic community based on pre- or post-filtered pyrose-
quencing reads. Here we assess the effect of error rates in
second generation FLX pyrosequencing on diversity esti-
mates using pyrotags PCR-amplified from two regions of
the 16S rRNA genes of a well-characterized laboratory
isolate of Escherichia coli.

Results

Approximately 300 bp regions from the 5′ and 3′ ends of
the 16S rRNA genes of E. coli MG1655 were PCR-
amplified using adaptor-modified standard primer sets
(A-27F/B-342R and B-1114F/A-1392R) and pyrose-
quenced from the 27-forward or 1392-reverse primers,
producing a total of 9781 reads. Of these, 4254 and 4244
(87% of the total reads) could be unambiguously assigned
to the 5′-forward and 3′-reverse regions of the 16S rRNA
molecule, respectively, based on the presence of error-
free barcode and primer sequences.
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Read quality filtering

Reads were quality filtered by applying either the current
practice of removing reads with unresolved bases and/or
anomalous read length, or quality score-based end-
trimming at different stringencies (3% to 0.1% per-base
error probabilities). After quality filtering and trimming to a
uniform length of 244 bp to enable comparisons across
samples and regions, the resulting reads were compared
with the 16S rRNA sequences from the E. coli MG1655
genome to determine error rates. The extent of improve-
ment and data loss after applying such quality filtering and
length trimming is presented in Fig. 1. The 5′-forward
region had, on average, 15% more reads with one or
more errors than did the 3′-reverse region at each quality-
filtering treatment (Table 1). This difference is due to the
higher number of homopolymers in the 5′-forward region
relative to the 3′ region (62 versus 50), because
homopolymer miscounts are the major source of errors in
pyrosequence data (Margulies et al., 2005; Huse et al.,
2007).

The lower quality of data from the 5′-forward region
resulted in ~15% fewer usable reads than from the

3′-reverse region. The now standard practice of removing
reads with undetermined bases (i.e. N’s) resulted in only
a marginal improvement (~1%) in errorless reads. In con-
trast, we found that trimming based on quality scores had
a more pronounced effect on error rate when relatively
stringent per-base error probabilities were applied
(� 0.2% producing > 4% improvement in errorless reads;
Table 1). The number of usable reads decreased sharply
when the most stringent (0.1%) error probability was
applied, indicating that the benefits of increasing the strin-
gency of quality filtering stringency were not offset by data
loss beyond 0.2% error probability for this data set.

Clustering evaluation

Reads were aligned and clustered at various identity
thresholds ranging from 100% (unique sequences) down
to 90% (sequences that differ by 10% are clustered into a
single OTU) (Table 1, Fig. 1). Assuming no sequencing
errors, the theoretical number of clusters (OTUs) should
correspond to the actual number of 16S phylotypes in the
sample; and in the case of E. coli MG1655, the number of
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Fig. 1. Effect of quality filtering and clustering on diversity estimates of an E. coli ‘community’ using pyrotags from a 5′-forward (A) and
3′-reverse (B) region of the 16S rRNA molecule.
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unique OTUs should be five in the 5′-forward region and
one in 3′-reverse region (Table 1). Remarkably, unfiltered
reads overestimate this diversity by two orders of magni-
tude, producing 643 and 385 unique OTUs from the
5′-forward and 3′-reverse regions respectively (Table 1,
Fig. 1). Moreover, we note that increases in the size of the
data set will increase the observed number of OTUs
(Fig. S1).

In ranking the abundance of OTUs in our samples, the
majority of reads possess the exact sequence of the cor-
responding region in an E. coli 16S rRNA gene; however,
rank-abundance distributions for both regions were
flanked by a long tail of OTUs containing one or more
insertion and/or substitution errors relative to the E. coli
reference sequences, and in the case of the 5′-forward
region, two putative chimeric OTUs formed between dif-
ferent E. coli 16S operons (Fig. 2). A remarkable feature
of the 5′-forward region distribution is that between the
abundant error-free OTUs and the rare erroneous OTUs
and singletons, there were several moderately abundant
clusters, together constituting ~6% of the reads. These
OTUs contain the same re-occurring homopolymer error;
6 instead of 5 guanines spanning E. coli positions 200–
204 (Fig. 2).

The primary effect of clustering at different levels of
sequence identity was to recruit erroneous OTUs and
singletons into larger clusters, thereby decreasing expo-
nentially the number of OTUs as identity thresholds were

relaxed (Fig. 1). But even at the most relaxed threshold,
there were two 5′-forward and one 3′-reverse OTUs that
did not match E. coli. The closest matches (> 98% identity)
to these OTUs were members of the Saprospirales
(Bacteroidetes), Bradyrhizobiales (Alphaproteobacteria)
and Peptostreptococcaceae (Firmicutes). All other
sequences clearly originated from E. coli and represent the
overwhelming majority (99.97%) of the sequence data.

Discussion

Despite a rigorous analysis of error rates in 16S rRNA
pyrosequences of known templates (Huse et al., 2007),
there have been no reports of the effect of pyrosequenc-
ing errors on diversity estimates (number of inferred phy-
lotypes), and therefore, no way to gauge the accuracy of
diversity reported in individual studies or to compare the
observed variation of communities across studies. To
resolve this issue, we chose to examine a single bacterial
strain both to remove the complication of interspecies
chimera formation (Huber et al., 2004) and to focus solely
on the effect of pyrosequencing error on diversity esti-
mates. Even with a fairly modest number of second gen-
eration 454 FLX reads from two regions of the 16S rRNA
genes of Escherichia coli MG1655 (~4250 reads per
region), we find that sequencing errors inflate estimates of
the actual diversity by two orders of magnitude when
considering unique reads (Fig. 1).

Table 1. Effect of quality filtering and clustering on diversity estimates (OTU number), error rate and data loss of pyrotags amplified from two
regions of E. coli MG1655 16S rRNA genes.

Read filtering

Number of OTUs at percentage identity thresholds
% errorless
reads

% reads
used100 99 98 97 95 90

5′ forward (V1 and V2)
Theoretical number 5 4 3 1 1 1
No quality filtering 643 95 31 16 5 3 68.7 77.9
Reads with N’s removed 600 85 29 14 4 3 69.8 76.7
Quality score-based filtering
(% per-base error probability)

3 638 92 31 13 3 3 68.9 77.7
2 632 90 30 14 3 3 69.0 77.6
1 609 79 24 9 3 3 69.1 77.3
0.5 562 66 15 7 3 3 70.7 75.3
0.2 469 30 6 3 3 3 73.2 70.8
0.1 372 26 5 3 3 3 77.8 57.8

3′ reverse (V8)
Theoretical number 1 1 1 1 1 1
No quality filtering 385 43 13 7 5 4 84.6 94.4
Reads with N’s removed 361 40 12 6 4 3 85.3 93.6
Quality score-based filtering
(% per-base error probability)

3 378 40 12 7 5 4 84.8 94.2
2 368 32 10 6 5 4 85.1 93.8
1 342 25 9 6 5 4 85.3 93.3
0.5 310 20 8 6 5 4 87.5 89.5
0.2 236 7 2 2 2 2 89.6 82.1
0.1 196 4 2 2 2 2 90.7 70.6

Diversity estimates should be considered relative to the theoretical number of OTUs from E. coli.
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This overestimation is consistent with a high percent-
age of reads with one or more errors; ~15% and ~30% of
reads for the 3′-reverse (V8) and 5′-forward (V1 and 2)
regions, respectively (Table 1), also detected in prior
analysis of the V6 region in which 18% of reads had � 1
error (Huse et al., 2007). A large proportion of these arte-
facts is attributable to miscounted homopolymeric runs
that occur in otherwise high quality regions of the read,
and are therefore not removed by end-trimming based on
quality scores (see below) or by culling reads with unre-
solved bases or anomalous lengths. Moreover, some of
these errors are highly reproducible and produce
phantom OTUs with large numbers of reads (Fig. 2), indi-
cating that not only will false phylotypes be detected, but
that, in some cases, spurious phylotypes will be relatively
abundant (� 1%) at least in the case of 100% OTUs.

In practice, 100% sequence identity is rarely used as a
threshold for defining OTUs, but rather, reads are usually
grouped at some lower level of sequence identity [often
97% sequence identity (Stackebrandt and Goebel, 1994),
which clusters sequences differing by as much as 3% into
a single OTU]. This has the effect of absorbing much of
the observed sequencing errors. We tested a range of
clustering thresholds, and as expected, clustering greatly
reduces the overestimation of diversity (Fig. 1). However,
we find that the current practice of removing reads with
undetermined bases and/or anomalous read lengths is
not adequate to ensure accurate diversity estimates at a
97% clustering threshold (Fig. 1). This occurs despite the
comparable or lower per-base error rates observed for
454 pyrosequencing when compared with conventional
Sanger sequencing (Huse et al., 2007).
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Recent improvements in error estimation of pyrose-
quence data (Brockman et al., 2008) allow the use of
trimming programs, such as LUCY (Chou and Holmes,
2001), that are based on the per-nucleotide quality score.
Only when the LUCY end-trimming stringency was
increased to � 0.2% per-base error probability (equivalent
to a phred quality score of � 27), combined with clustering
at � 97% identity, did the number of OTUs approach the
expected number of E. coli MG1655 rRNA operons. The
slightly overestimated number of OTUs at these settings
were, in fact, not sequencing artefacts, but most likely due
to experimental contamination introduced during the PCR
amplification, as seen previously with no-template PCR
controls (Tanner et al., 1998). These contaminants repre-
sent only 0.03% of the reads obtained in the present study
and suggest that all PCR-based surveys that use broad-
specificity primers will likely suffer from similar low-level
background contamination, a point worth bearing in mind
when interpreting rare biosphere data.

Based on our analyses, we propose the use of quality
trimming to 0.2% error probability and a clustering thresh-
old of 97% identity when applying 454 pyrosequencing to
community profiling. These parameters should substan-
tially reduce artefactual inflation of diversity estimates due
to pyrosequencing errors. Raising the trimming stringency
from 0.2% to 0.1% error probability results in a sharp
decrease in usable reads with little additional improve-
ment in error reduction (Table 1). We note, however, that
error rates are sequence specific (Fig. 1A versus Fig. 1B)
and that the spurious inflation of OTU numbers will
increase with the size of the data set (Fig. S1). Therefore,
the proposed parameters may be insufficient to prevent
overestimates of diversity using very large pyrotag data
sets from regions of the 16S rRNA gene with a high
fraction of homopolymers. Overall, we anticipate that the
use of high stringency quality-based trimming and clus-
tering thresholds � 97% will be the simplest, least com-
putationally intensive means to ensure that 16S pyrotag
analyses provide accurate, high sensitivity phylogenetic
profiling of microbial communities.

Experimental procedures

DNA extraction

Escherichia coli MG1655 was grown overnight at 37°C in
10 ml of LB and harvested by centrifugation at 10 000 g for
5 min. Cells were treated with proteinase K (20 mg ml-1)
and lysozyme (5 mg ml-1), and DNA was isolated by
standard phenol-chloroform extraction, followed by ethanol
precipitation.

PCR amplicon library construction and sequencing

One 5′ and one 3′ region of the 16S rRNA gene were targeted
using the broad-specificity oligonucleotide primer pairs 27F/

342R and 1114F/1392R (Stackebrandt and Goodfellow,
1991). Primer sequence (small caps) were modified by addi-
tion of the Roche 454 A or B adaptor sequences (lower case)
and a five-nucleotide identifying barcode (bolded uppercase)
to distinguish different amplicons in the same sequencing
reaction, as follows: A-27F, 5′-gcc tcc ctc gcg cca tca gAC
GTC AGA GTT TGA TCM TGG CTC AG-3′, B-342R, 5′-gcc ttg cca
gcc cgc tca gCT GCT GCS YCC CGT AG-3′, A-1392R, 5′-gcc tcc
ctc gcg cca tca gTG CTG ACG GGC GGT GTG TRC-3′ and
B-1114F, 5′-gcc ttg cca gcc cgc tca gGC AAC GAG CGC AAC

CC-3′. Twenty-microlitre PCR reactions were performed in
triplicate for each primer pair, using 0.5 unit Taq (GE Health-
care), 2 ml of supplied 10¥ buffer, 0.4 ml of 10 mM dNTP mix
(MBI Fermentas), 0.6 ml of 10 mg ml-1 BSA (New England
Biolabs), 0.2 ml of each 10 mM primer, and 10 ng of E. coli
genomic DNA per reaction. Thermocycling proceeded as
follows: 95°C for 3 min followed by 30 cycles of 95°C for 30 s,
55°C for 45 s, and 72°C for 90 s and final extension at 72°C
for 10 min. Upon completion, the three reactions for each
primer pair were pooled, and amplicons were purified with the
Qiagen MinElute PCR cleanup kit and quantified on a Qubit
fluorometer (Invitrogen). Barcoded amplicons were mixed in
equal proportions prior to emulsion PCR in preparation for
GS FLX pyrosequencing.

Informatic analysis

Pyrosequencing flowgrams were converted to sequence
reads using the standard software provided by 454 Life Sci-
ences. Reads were either used directly (which served as the
unfiltered control) or quality filtered in one of two ways: (i)
reads with any unresolved nucleotides (N’s) were removed
from the data set, or (ii) reads were end-trimmed based on
quality scores over a range of accuracy thresholds (0.1–3%
per-base error probabilities) using LUCY (Chou and Holmes,
2001). This resulted in eight quality filtered data sets
(Table 1).

To compare sequences across samples, all reads in each
of the data sets were truncated from their 3′ end to 244 bp,
and reads less than 244 bp were discarded. In the same step,
barcodes and primer sequences were trimmed from the 5′
end, and any read with a sequence error in its barcode and/or
primer was removed. This resulted in 5′-forward reads span-
ning positions 28–246 (E. coli numbering), which encom-
passes variable regions 1 and 2, and the 3′ reads spanning
positions 1168–1391, which encompasses variable region 8
of the 16S rRNA molecule. From the remaining uniform
length sequences, all redundant sequences were removed
yielding a dereplicated data set containing only unique phy-
lotypes (termed the 100% OTUs in subsequent steps).

Unique truncated reads were aligned using a modified
Needleman–Wunsch algorithm (Needleman and Wunsch,
1970) and clustered along a range of identity thresholds
(90%, 95%, 97%, 98% and 99%) using MCL, executed with
default parameters (Van Dongen, 2000). Sequencing errors
in each of the unique reads were determined by BLAST align-
ment (Altschul et al., 1997) to the known 16S rRNA gene
sequences of E. coli MG1655, assuming that any mis-
matches derived from the most similar of the seven E. coli
operons. For the 5′-forward region considered, there are five
unique 16S rRNA sequences in E. coli, and for the 3′-reverse
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region considered, all E. coli 16S sequences are identical.
[Correction added on 25 September 2009, after first online
publication: in the preceding sentence, ‘three unique 16S
rRNA regions’ was replaced with ‘five unique 16S rRNA
sequences’.] A subset of reads was manually inspected in
ARB (Ludwig et al., 2004) to confirm the specific type and
location of the BLAST-determined errors and to identify puta-
tive chimeras.
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