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The remarkable diversity in the contents of genomes

raises questions about how new genes and new functions

originate. Recent evidence indicates that parasitism,

particularly the molecular interactions between phage and their

bacterial hosts, is a likely mechanism for generating new genes.

This invention of such novel functions seems to be founded on

a strategy that secures the short-term survival of parasitic

elements and thereby contributes to the renovation of gene

repertoires in their host.
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Introduction
The genomes of cellular organisms typically contain

thousands of genes, but at most 100 are common to

all life forms. Even within a bacterial species such as

Escherichia coli, the differences in gene content among

strains can be enormous [1]. This implies that the renova-

tion of gene repertoires through the invention of new

genes may have played a larger role than the modification

of ancestral sequences in generating evolutionary novelty.

The processes by which new genes are produced are not

fully known; however, the most broadly held view is that

regions of the genome are duplicated and that subsequent

functional diversification can produce genes conferring

novel properties [2]. Because the invention of useful

genes through the modification of existing sequences is

a slow and tentative process, many organisms have drawn

on an alternative means — namely, the enlistment of

established traits from unrelated organisms. There are

obvious advantages to this strategy in that the genes from

other organisms have been already refined by selection

and the benefits can be instantaneous. Numerous

lineages have successfully exploited novel or previously

unsuitable environments by such gene-acquisition

events, ranging from those leading to antibiotic resistance
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[3,4] and thermophily [5] in some bacterial species, to

photosynthesis [6–8,9�] and aerobiosis [10] in eukaryotes.

Here we provide evidence that parasitism, particularly

the molecular interactions between phage and their bac-

terial hosts, is a likely mechanism for generating new

genes. In particular, mobile sequences, such as phages

in bacteria and transposable elements in eukaryotes,

might be actively devising novel traits for their host

organisms.

Co-opting genes from selfish elements
The alien genes that can be adopted most easily by an

organism are often those of parasitic or selfish elements

that are already present in the genome of that organism.

For example, in Pseudomonas aeruginosa, genes encoding

the tail of two different bacteriophages have been con-

verted into bacteriocins used by the bacteria to kill its

competitors [11]. In eukaryotes, it also seems that trans-

posable elements have served as substrates for new genes:

in Drosophila, the extension of chromosome ends involves

proteins similar to those encoded by two long interdis-

persed element (LINE)-like retrotransposons, TART

(telomere-associated retrotransposon) and HeT-A, sug-

gesting that, in the fly lineage, genes from transposable

elements have assumed the function usually achieved by

telomerases [12,13�].

Even more striking is the nucleus-encoded mitochondrial

RNA polymerase of eukaryotes, which has a high degree

of similarity to the RNA polymerase of bacteriophage T3

and T7 [14]. Apparently, this gene was recruited by an

ancestral eukaryote for mitochondrial transcription, and

a duplicated form functions in transcription in chloro-

plasts [15]. In addition, similar events in which viral

genes have displaced host genes have been proposed

for the replicative helicase DnaB and the DNA poly-

merase g of mitochondria (reviewed in [16��]). Recently,

Mallet et al. [17��] have reported that a gene from a

human endogenous retrovirus, which is restricted to

the hominoid lineage has taken on an active role in

formation of the human placenta, possibly by favoring

cell fusion.

In the above examples, the recruited genes maintain

significant similarity to genes that are present within

selfish elements, but this need not be the case. In verte-

brates, one of the mechanisms responsible for generating

new antigen-binding domains of immunoglobulins is

reminiscent of that of transposases within DNA transpo-

sons, suggesting that this system was recruited from a

selfish element in the ancestor of vertebrates [18].
www.sciencedirect.com
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Despite the operational similarities, the genes controlling

this activity in vertebrates, RAG1 and RAG2, are not

homologous to known transposons or to any other genes

for that matter.

Parasites as patrons
Novel traits might sometimes arise from genes that

originally functioned in a parasite or symbiont [16��],
but the number and scope of such traits, particularly

those encoded by bacterial accessory elements, are some-

what limited. However, features of these elements enable

them to capture and to disseminate genes from previous

hosts, and in most bacterial genomes there is evidence

that plasmids, phage or transposons have been respons-

ible for bringing in genes from other organisms [19].

Thus, despite their relatively limited coding potential,

mobile elements offer a vast repertoire of user-ready

genes that can potentially benefit their hosts.

Perhaps most notable among the sequences that have

been transferred by such elements are microbial patho-

genicity islands, which are chromosomally encoded clus-

ters of virulence genes that are absent from the genomes

of related non-pathogenic strains and species. Such

islands have been detected in many bacterial genomes,

and it is now clear that they have played a substantial role

in the adaptation of bacteria to new environments and

symbiotic interactions (reviewed in [19]). Features of

these islands, including their atypical base compositions,

their occurrence at known phage integration sites, and/or

the presence of characteristic repeat motifs, suggest that

they have been introduced into the chromosome by

mobile elements. Furthermore, the bacteriophage or

plasmids bearing these genes can be sometimes trans-

mitted between organisms [19].

Although such events of lateral gene transfer are com-

monly viewed as exchanges between bacteria, most

involve some parasitic intermediate that serves as the

vehicle for spreading genes among organisms. Thus,

novel genes recruited in this manner will not only benefit

the recipient organism but also assure the survival of

the parasitic donor. Thus, by providing useful genes, the

inevitable conflict between parasites and hosts can be

converted into a mutually beneficial symbiosis, in which

the parasite and host coexist.

Elaborating genetic novelty
Maintaining this molecular symbiosis requires the para-

sitic elements to safeguard their existence by supplying

genes that confer an advantage to their host. It seems that

the selfish elements themselves may be devising new

genes that are only of use to their host. Because viruses

and phage typically have high rates of evolution, non-

homologous recombination and gene exchange, they

possess the tools necessary for quickly creating and dis-

seminating novel sequences [20,21��,22].
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This mechanism seems to be a very powerful means for

innovation and may have contributed significantly to the

diversity among bacterial genomes. Although the ances-

tries of many genes within a genome can be established

by their similarity to previously characterized sequences,

there exists a large class of genes, constituting up to 20%

of the genes in a genome, for which there are no homologs

in any other organism. These ‘ORFan’ genes are unique

and represent the only members of their protein families;

they are even found in species for which genome

sequences are available from close relatives, suggesting

that they can originate very quickly. For example, the

many sequenced strains of E. coli diverged relatively

recently, but each contains a unique set of ORFan genes

that are not present in their closely related strains [1].

These ORFans display many characteristics of phage

genes, namely, they are short, (A+T)-rich and quickly

evolving, and occur in clusters near phage integration

sites [23,24,25�]. In addition, their lack of homologs

probably reflects the vast amounts of unexplored phage

diversity [21��,26]. A de novo origin of ORFans in phage

implies that some fraction of the new and potentially

useful genes in bacteria are being created by non-

cellular organisms; in this regard, one might view bacter-

iophages as start-up entities whose existence is based on

creating an innovation that has been overlooked by other

organisms.

Many ORFans in the E. coli genome are functional, and

some are already known to be involved in key cellular

functions such as translation and replication [25�].
Although it is premature to generalize these observations

to eukaryotes, the ORFan genes of Drosophila are also

short, (A+T)-rich and quickly evolving [27��], suggesting

their possible link to transposable elements, which are

known to be (A+T)-biased in most eukaryotes [28]. Thus,

several mechanisms may account for the generation of

novel genes in cellular organisms (Figure 1). Although

evolution from ancestral sequences probably remains the

main contributor of new genes in eukaryotes, accessory

elements may have had a significant role in the evolution

of new genes in prokaryotes.

The fate of start-up entities
Although ORFans are abundant and harbor numerous

features of phage genes, there is scant evidence of the

actual elements that brought these genes into existence or

into the genome. If the invention of new genes is founded

on a strategy that secures survival of selfish elements,

why are the ORFan genes in bacterial genomes so rarely

associated with identifiable phage sequences?

Bacteria possess a mechanism whereby sequences under

relaxed selective constraints are gradually eroded and

eliminated from the genome [29,30]. This process of

deletional bias has contributed to the massive reduction
Current Opinion in Genetics & Development 2004, 14:616–619
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Mechanisms of the origin of new genes. Eukaryotic genome repertoires are usually thought to evolve from ancestral sequences that are already

present in the genome (left), although contributions by accessory elements (right), such as transposons, have been reported (see text). In prokaryotes,

selfish elements (right), and particularly bacteriophages, are likely to have played a much more significant role. Abbreviation: LGT, lateral gene transfer.
in the genome size of endosymbiotic and parasitic bac-

teria, which derived from free-living bacteria with much

larger gene inventories [31,32].

In eukaryotes, the ancestral a-Proteobacteria, which was

recruited for aerobiosis, is now reduced to a dedicated

organelle [10]. Similarly, in bacteria, accessory elements

can be eliminated once their few beneficial genes have

been integrated into the host genome. By devising traits

with latent potential to bacteria, phage can initially pro-

mote their own survival in host genomes, although even-

tually only the beneficial genes, and not those of phage,

are retained. Borrowing an analogy from the corporate

world again, phage might be viewed as start-up compa-

nies that are initially very successful, but ultimately

disappear or become subsumed.

Conclusions
The manner in which organisms develop new traits has

been the subject of continued speculation and explora-

tion over the past few decades. Full genome sequences

can now provide comprehensive information about gene

repertoires, but comparative analyses are necessary to

elucidate the origins, evolution and dynamics of genome

contents. The finding that most genomes contain

sequences with no homologs, even in close relatives,

has prompted a search for both diversity in previously

unexplored areas and the ways in which these sequences

can originate.
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On the basis of their features, mobile elements seem to

be among the most dynamic and inventive gene resources

for cellular genomes. Current efforts to sequence phage

genomes should aid our understanding of the mechan-

isms underlying genetic innovation, and we predict that

these sequences will provide insight into the origin of

ORFans in bacterial genomes.
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