Comparative analysis of continuous
variables

‘Independent evolution may be the ideal criterion f 1
¢ .
method’ (Ridley 1983a, p. 18) ron for the comparative

5.1 Introduction

Many om the questions of interest to comparative biologists involve
comparing the values of characters that vary continuously, rather than
a_moﬁog_? among a number of species. Measures of morpholog
@Em_o_.om% life histories, and behaviour, such as walking, flying wh.
swimming, produce quantitative values. Comparative studies of ormamo,ﬁma
that vary o.oumzcocm_% have progressed from relying nearly exclusively on
cross-species correlational analyses that ignore the historical relationships
among species, to sophisticated techniques that incorporate information
mc.oE phylogenetic relationships into the comparative test. We review
briefly each of the major approaches in this chapter. Those comparative
methods that compute sets of statistically independent comparisons, either
across contemporary taxa, or between ancestral and descendant ,:oamm
emerge as the best technigues currently available; ,
supported by the results of computer simulation Studies.

As with tests for discrete characters, tests for continuously varying
ovmamoﬂma are confronted with the problem that species form a nested
hierarchy of phylogenetic relationships. For the reasons described in
ﬂ:m?ﬂ 2, closely related species are typically more similar than are more
.a_mﬁm::v\ related species. This means that species cannot be treated as
Ea@@gaoi units of information in statistical tests. The various compara-
tive techniques that we review in this chapter can be distinguished by the
procedures that they use to manage the effects of similarity associated with
m:ﬁwmm:m:o relationships. Each of the methods is based on a set of, often
mmplicit, assumptions that comprise a null hypothesis of w<o_5,mo:m3\
change, and on a set of statistical techniques that apply those assumptions to
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rcal data. The statistical techniques are designed to produce data points
that can be treated as independent for statistical analysis.

Should we even bother with a separate class of methods for continuous
-ariables? In a mathematical sense, the distinction between models for
discrete variables and models for continuous variables hides a deeper
cquivalence between the two cases. Continuous variables, the topic of this
chapter, are merely discrete variables in which we allow the width of the
discrete units to become vanishingly small. Assume that change in a
continuous metrical character proceeds by a series of discrete steps. The
‘distance’ moved each time is a fixed amount either ‘forward” one unit (+1)
or ‘backward’ one unit (—1) along the scale. Forward and backward
movements are equally likely. Let there be a single step in each of a
number of successive epochs of time, where a single epoch is denoted by .
The position along the scale after n such epochs is the sum of all the
preceding steps. These circumstances give rise to what is known as a
random walk. Some random walks will have a preponderance of +1s,
others a preponderance of —1s, others a more even number of pluses and
minuses. Given that one of two possible outcomes occurs at each interval
of time, there will be 2" possibie outcomes of the random walk after # steps.

Statistical theory informs us about the expected distribution of outcomes
of such a process when we allow the unit of time 7 to become vanishingly
small, and thereby allow n to become large. It can be deduced from the
Central Limit Theorem that, in the limit as r goes to zero, the outcomes of
the random walk after some unit of time ¢ will be normally distributed with
an expected value of zero, and variance of ¢, where o° is a positive
constant.Tn continuous time, the discrete process is transformed into one
of Brownian motion where the variance of change accumulates in direct
proportion to the amount of time the process has been allowed to goJWe
make use of this result in the next section to illustrate various properties
associated with phylogenies.

We begin this chapter with a discussion of the statistical problems that
arise when data obtained from phylogenies are used in conventional
statistical procedures. These are the same problems that arose in
connection with methods for discrete characters, but now we discuss them
using statistical models that are more convenient for continuously varying
characters. We then show how each of the more recently developed
techniques confronts those statistical problems. Although our account is
somewhat historical, it also develops as a logical progression of ever more
acceptable procedures. Our final sections present the most recently
developed techniques, and then summarize selected results from computer
simulations which serve to underline one of the main messages of this
book:Twe make assumptions about the way evolution proceeds whenever

we choose a comparative test. ‘
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5.2 Testing hypotheses on continuous variables

H:w m_BEomH way to test for a relationship between two continuous
<m:.m2mm 18 to treat species as independent data points and apply standard
statistical techniques to characterize their relationship. This was also true
moH. testing the relationship between two discrete variables. However., as we
ﬁo:.:w.a out in Chapters 2 and 4, such an approach is bound to be ,mméma
mﬁ.m:m:om:v\ because species are part of a hierarchical phylogeny. This fact
S::m_._v\ guarantees that each species will not have an@o:amz:.v\ evolved
the m::.o of traits that defines its phenotype, thus posing a critical problem
for statistical methods which assume that the data points are independent
To see why the preceding statement is true, it is necessary to think mco?
the various ways that, for any given set of contemporary species, evolution
could have arrived at the present. Consider the phylogeny om the eight
contemporary species in Fig. 5.1. This figure is similar to Fig. 4.1, except
now the species values represent two continuous characters. , P

Species 1 2 3 4 5 6 7 8
State of X 17 23 21 7 42 14 58 11
State of Y 13 21 19 9 37 16 64 2

_n“um. 5.1. @mf species m.mB::w:moch\ evolving from a common ancestor. Values
of two continuously varying .o:mnmoﬁma (X and Y) are given for each species. Figure
4.1 uses the same example with discrete characters. C

. For the purpose of discussion, we assume that characters evolve
independently according to a Brownian motion process, following Ed-
Em.am m:.a .Om<m_:-mmo§m (1964) and Felsenstein (e.g. Gmyw 1985a wommv
This mﬁmﬁ_m:o& model is appropriate for describing the S:ao,B émn,n_mz: m
of a variable along a continuous dimension (see Section 5.1). Figure mmw
plots E:a .E:QOB walk sequences in which the value of the B:moﬁ ém:m W;
any point is the sum of all of the changes before it. The four sequences can
be thought o% as characterizing the evolutionary changes through time in
any four species from Fig. 5.1. The displacements along the horizontal axis
represent the value of a character, and the vertical axis is time.
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Fig. 5.2. Character change among four independently evolving lineages following
random walks after splitting from a common ancestor at time zero. The value of
each random walk at any point is the sum of all previous changes for that lineage.
See also Felsenstein (1988).

Alternatively, the sequences in Fig. 5.2 can be thought of as iterations of
the same random evolutionary process for a single species. This interpreta-
tion makes explicit what is meant by the expected variance of evolutionary
change. If we were to re-run the random walk many times, the variance of
the end-points would be an estimate of the expected variance of
evolutionary change for that particular branch length. More generally, if
the variance of a single step of the random walk is o2, then the expected
variance of end-states after time period ¢ will be 10,

Thinking about the evolution of two or more species in terms of random
walks can be used to illustrate why phylogenies might introduce correla-
tions among species. If the phylogeny of species is like that in Fig. 5.1, then
the random walks illustrated in Fig. 5.2 make the point that the
evolutionary changes in the species since their common starting point have
been independent. Thus, given the Brownian motion model, and the
phylogeny of Fig. 5.1, we can treat species as independent points for
statistical purposes. Furthermore, because the statistical properties of the
random walk are known, we can say something about the expected change
in each branch, as well as the expected variance of change in each branch.

But now consider that the eight species have the phylogeny shown in Fig.
5.3. This is, again, similar to a figure (Fig. 4.2) used in Chapter 4, except
now the characters are continuous.
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Species 1 ) 3 4 5 6 . 8
X 7 10 4 5 19 23 27 04
Y 11 12 2 4 21 21 19 og

Fig. 5.3. A dichotomously branching phylogenetic tree showing the evolutionary

history of eight species. Values of two continously varying characters (X and Y} are
given for each species.

It will often be observed in such a phylogeny that the species in each pair
of tips will be more similar to each other than to the other species. The
Brownian motion model along with the phylogenetic structure can be used
to illustrate this phylogenetic similarity. Figure 5.4 displays the results of a
random walk that could correspond to species 1 through 4 from Fig. 5.3. At
the beginning of the sequence there is but one path, indicating the common
ancestry of all four species. At a later time the bifurcation corresponding to
node n2 occurs. Later yet, nodes n4 and n5 occur. At the end of the
sequence species 1 and 2 are closer to each other than to species 3 and 4.
Their shared history introduces a correlation between them, even though
the evolutionary changes along all branches of the tree have been
independent. The sobering message from Fig. 5.4 is that phylogenetic
similarity can arise from a completely random process. Imagine the
similarity that arises when we aliow for the processes described in Chapter
2!

Similarity associated with phylogeny causes statistical problems. Most
statistical methods assume that the data points can be thought of as (1)
having been sampled independently from (2) a normal distribution with
some mean and variance. Phylogenetic similarity, however, by introducing
a correlation among characters, invalidates the first assumption. The
second assumption is slightly more complicated. Anticipating issues to be
discussed later in this chapter, there are two main ways that points sampled
from a phylogeny may have different expected variances.

First, we have assumed that the Brownian motion process proceeds at
the same rate everywhere in the phylogeny. This guarantees that over any
given amount of time, all lineages with a common starting point will have
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Fig. 5.4. Character change among four lineages mo:oém:w Sﬂaoaa,zm;mmm__mﬁwﬁ
itting ot andom w
itti stor at time zero. The value of each r . .
splitting from a common ance \ e e ncoges in
int is i hanges for that lincage. Unh

any point is the sum of all previous chang :
IM vﬁ 2, the ones represented here have not .m<o~<wa _:aono:aw:zv\ UM: Wwwm
f._S.:w,a ,“massm amounts of common m:o@wﬁ%.m_:oo.:am 0, Eq:::m %3 M the
,_g_:;ch:omo tree shown in Fig. 5.3 There is a lineage split at n2, an

B = A
subsequent splits at n4 and n5. See also Felsenstein (1988).

the same expected variance of change. However, _W we Mwm_ww MMM
biologically unrealistic assumption of equal rates & M.%:mﬂ ::m% o
1945), different expected <mam:om.m of change oceur EN if mmozm mooOm:a,
thereby invalidating the mmm_cBn:.oz of n.ﬂsﬂ:@ﬁ“a«mn,_wwoomammmﬂm gm
1 lity of variances may also arise even it o

”“om%%ﬁm M\m_com derived from the phylogeny that do not :m<_o a oom”ﬂww
starting point, and which therefore may not have been evolving

; e. .

vmﬂw\m@_ﬂﬂwﬁw M“MW@@Q these points in detail vmowcm.o they :_:mﬁmﬂo m_wnm
the essential statistical and m<o_cao.:mQ oo:.m_anam:o:m :,:wﬂ mus H%wm:nm_
developing a test of a comparative nm._m:o:m:%. We %.ZM mw:am:om
problems because phylogenetic relationships cause a lack of indeper
.wBﬂOD:Q the data points_and because-unequal rates of change or differing

T

time_periods of change in different lineages may introduce _Mwe%%ww
variances, Fundamentally the same EoE.oBm were encountere :w .% ¢
4. Either of these two problems—lack of H.:a.oﬁm:am:oo.a rﬂﬂﬂmﬂ:@ v\mam
variances—renders many standard statistical tests invalid. ere
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statistical techniques for managing the effects of non-independence and
unequal variances (Generalized Least Squares, see Draper and Smith
1981), but they depend upon being able to specify the nature of the
correlation among species, and the expected variances of their characters.
This is where the evolutionary considerations become central: our beliefs
about the extent of the correlation among species and the extent to which
variances are unequal depend upon our assumptions about how evolution
proceeds. Does evolution move along at a constant rate in all branches or
does it have different rates in different branches? Alternatively, is
evolutionary change punctuational such that branch length is less import-
ant? Or, is it such a jumble of these two processes (and others) that it is
futile to assume one or the other? The answers that we give to these
questions are crucial and, as with similar questions in Chapter 4, they
define the various different methods of comparative analysis.

There cannot be ‘solutions’ to the problems posed by comparative data,
then, only approximations to solutions based upon our current understand-
ing of evolution. Some approximations will be demonstrably better than
others for particular situations but, in many instances, the validity of a
technique will be unknown. This is an important point because it means
that the choice of a particular approach for analysing comparative data will

Te————

often depend less npon knowlédge that one technique s superior to
another. than on a set of beliefs about the workings of evolution for a
particular i variables. i
In the sections that follow, we describe different methods that have been
used to analyse comparative data on continuous variables. Each method
can be characterized by the statistical techniques that it uses to produce (at
least in theory) data points for comparative analysis that are independent,
and that all have the same expected variance. Some of the methods
attempt to manage the effects of phylogenetic similarity by estimating the
extent of non-independence and heterogeneity of variance in the data on
the basis of the phylogenetic tree. Other methods create independent data
points by discarding the variation that is thought to reflect phylogenetic
similarity. An additional class of methods based on equally plausible
models can test the comparative relationship without discarding any of the
information. This class of methods attempts to define a set of mutually
independent comparisons calculated from the phylogeny. Comparisons can
be either between species or between higher nodes, or between the
beginning and end-states along a branch, in which case the direction of
phylogenetic change is of interest (directional versus non-directional
comparisons are discussed in Chapter 1). In either case, the comparisons are
then scaled according to empirical or model-based rules that attempt to
equalize their variances. We argue that these techniques are the best
currently available for conducting comparative tests.
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For the rest of this chapter, we shall make repeated H&@Hono.w to Figs
5.1-5.4 which are drawn, following oo:<w::wF with extant species at the
top. Unfortunately, there is another convention that we B,cﬁ mo:ouz, w:a,
that is to talk of ‘higher’ versus ‘lower’ taxa, and ,:_m:ma versus lower
nodes. As far as phylogenetic trees are concerned, typified by Figs 5.1 mzm
5.3, higher taxa and nodes are usually drawn at the do:.oB.% the tree an
lower taxa and nodes are at the top! For oxﬁ:v_mv aspeciesisa _oéoa taxon
than a family. It seems unnatural to break either o.m these conventions, msm
appropriate care must thus be taken when translating between the text an

the figures.

5.2.1 A cautionary note

Unless otherwise stated, we_assuige in our discussions oﬁ the various
methods that the phylogenies are known without error, | H.Em, o.m course,
will seldom be true, but it is an important assumption, given the
uncertainties about whether a reconstructed phylogeny is the true
phylogeny, even when the best B@Hroam. are used (see .Os.mwﬂmw mv..moao
work has been done on the issue of placing confidence limits on och_m:wm
of phylogenies (see Felsenstein Hommnq. and n@m@am:.omm therein). H.L:ﬁ e is
known about how sensitive the conclusions of a mma:o.:_m: study will cm. to
the tree that is used. Until more work is done in this area, oovaﬁ:Eo
biologists should be aware that their results may depend upon a particular

reconstruction of a phylogeny. If several phylogenies are equally likely (or ”
parsimonious, or compatible), then perhaps the analyses should be done

using them all (see Bjorklund in Harvey 1991 for an example). If the
i

conclusions vary widely, caution should be exercised in their interpretation.

5.3 Species analyses

Species values have been used as the units for statistical mwma\mﬁ in the vast
majority of comparative studies that have analysed Ho_mco:w.rﬁm _umgmms
continuously varying characters'!. We have stated that species cannot M
assumed to be independent and that they may mm<m.a.&.onoc.ﬁ expecte
variances. So, what evolutionary assumptions are :EF_.Q” in using species
as the units of analysis? That is, what models of o<o~.c:o: M,\ocE give 1is€
to species being independent and having the same variances? ael
As was true for discrete characters Qo:ogz.m Fig. 4.1), the mode
implicit in Fig. 5.1 provides one answer. Under this B,oao_ & m<o_c:o:v.~w0
use species as the units of analysis means that the ,m<om:mmn9 must be

i i ical enqguiry include: Quiring (1941);
1 les from a variety of taxa and fields of Jﬁoﬂom_nm q \ ;
Zaimﬂxﬁ.ﬁwy Hutchinson and MacArthur (1959); Southwood (1961); _.Soch C@mmv_m
Schoener (1968); Millar {1977); Clutton-Brock er al. (1977); Wooton (1987); Burt and Be
(1987); Clutton-Brock (1989).
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willing to defend the belief that the phylogeny of the species can be
represented by a simultaneous radiation of all of the speci £
common ancestor (see also Felsenstein 1985a). That is, the investigator
must assume that there are no shared branches in the phylogeny. It must
also be assumed that rates of evolutionary change are the same in each
branch, an assumption guaranteeing that each datum has the same
éxpected variance. These assumptions, if met, would mean that the
different species could be treated as random samples from some common
underlying distribution of possible outcomes. However, true simultaneous
radiations may be rare in nature, and do not characterize the phylogenies
of interest to most biologists.

Thus, to use species as independent data points in a comparative analysis
requires that one ignores phylogenetic relationships. This should be
anathema for anyone who believes in evolution. Nevertheless, species are
used this way in comparative analyses, and so it is prudent to be aware of
the consequences. The major problem is that the confidence limits on
statistics are sensitive to the number of degrees of freedom declared in the
analysis. Because species are typically not independent, confidence limits
will be spuriously narrow. This can lead to rejection of a null hypothesis on
false grounds. Allometric studies that employ species provide good
examples.

Figure 5.5 shows a logarithmically scaled plot of home range size against
body weight for 72 primate species. The slope of the model 1 regression
line describing the best fit relationship between home range size and body
weight is 1.26, with 95 per cent confidence limits from 0.95 to 1.58. A slope
of 0.75, which might have been expected on energetic grounds (Kleiber
1961), lies outside these confidence limits. However, it is not valid to reject
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Fig. 5.5. Home range size increases with body weight across a sample of 72
primate species. When both axes are scaled logarithmically, the relationship is
approximately linear with a slope of about 1.26. (Data from Harvey and Clutton-
Brock 1981, and subsequent sources). ’
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(1.75 for this reason alone. The sensitivity of the analysis to the number of
degrees of freedom is illustrated by the fact that if the sample size is
reduced to 30, which is approximately the number of genera in the sample,
the confidence limits widen to embrace 0.75.

5.4 Analysis of higher nodes

If species cannot be considered independent then perhaps some higher
node can be? Crook (1965) suggested using genera and family means
rather than species, but it was not until more than a decade later that an
explicit statistical criterion was offered for this practice. Clutton-Brock and
Harvey (1977), Harvey and Mace (1982), and Harvey m:a Clutton-Brock

(1985) developed the use of the nested analysi ¢ (Sokal and
xo:: 1969) to describe how the total variation among species in a
continuous character is distributed among the taxonomic Tevels. The
distribution of variance by taxonomic level is. in turn, used to identify
which taxonomic level to use as the unit of analysis.

The nested ANOVA partitions the total variation among species into
components representing each of the nested levels in a taxonomy:

2 2 2 2 2
Ot — T mAmvnTC. WAS..TQ. onvnTO. ofc)- AMHV

The term on the left is the total variance among species on the trait of
interest. This total variation is then partitioned into, to adopt a simple
{axonomy, a component representing the variation of species within their
venera, the variation of genera within their families, families within orders,
and finally orders within the class. At each level the mean of the values
{rom the level immediately below is used.

If both sides of equation (5.1) are divided by T and multiplied by 100,
then the left hand side must be 100, and the terms on the right hand side
become the percentages of variance found at each taxonomic level:

Ac.m::\a,m::v x 100 = :QNAE + Qum:.v + O.uxov + O.uo?v V\O.NEL % 100. (5.2)

v\‘;oma percentages of variance then can be compared among variables
with different total variances. Another way to use the terms is to express
them as cumulative proportions of variance moving from the highest level
to the lowest level. Thus, if species is the lowest level of analysis then, by
the time the o7, term is added. 100 per cent of the variance will be
accounted for. These cumulative percentages of variance have a precise
statistical interpretation as infra- class correlations. The interpretation of an
intra—class correlation is the correlation expected between any two data
points selected at random from the same group. For example consider that

species are the lowest taxonomic level represented and 75 per cent of the
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variance is accounted for by the combination of orders within the class and
mma:.:mm within the orders. Then, consider sampling repeated pairs of
species where the first member of each pair is chosen at random from the
amS. set and the second is another randomly chosen species from the same
family as the first. The correlation among the pairs will be 0.75. The intra-
class correlation coefficient might be viewed as a measure of the power of
ore species for predicting the value of another species in the same family.
ﬂ.oa.Bm@ continuous variables, nested ANOVA reveals that most of the
variation in the trait occurs among orders nested within the class, and
among families within orders (although, in principle, there is no oo:mmam::
on how the variation is partitioned). Body weight in mammals provides a
good example. Different orders tend to vary a great amafooanmﬁm
Proboscidea (elephants) with Chiroptera (bats)—whereas species within
genera tend to have relatively similar body weights. Table 5.1 displays the

ammr:m om. nested analyses of variance on several size and life history
variables in mammals.

Table 5.1 Taxonomic distribution of life history variance among placental mammals
%m@:_ﬁm.a values are percentages of total variance accounted for at w:noommmﬁia.
Sxoco::n levels estimated from a nested ANOVA on logarithmically QM,Sw»,o_.Emn_
species averages. (After Read and Harvey 1989). ’

>Eo_.~m” species genera families orders

Within:  genera families orders class
Variance component:* Qwﬁ o) :u‘,.c‘,‘v: Awu.n )
Adult weight 3 7 21 69
Neonatal weight 3 5 wu 65
Gestation length 2 6 m~ 1
Age at weaning 8 11 19 62
Maximum reproductive life 10 10 12 68
Annual fecundity 5 7 14 uw
Annual biomass production 6 8 8 68

*Following eqn (5.2). each variance om:, onent ? the iolied b
5.2). ez aria table he /
100 and divided by o b i been multiplied by

Harvey m:.a Zmo.m (1982) suggested that patterns similar to those in
Table mp.:dm;: Uo. _.29.9@8& to indicate that species within genera, and
genera within families provide additional but probably not independent
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data points in an analysis. That is, any one species’ value will tend to be a
pood predictor of the other species in that genus, and the mean for a genus
will tend to predict the other genera in a family relatively well. An
alternative interpretation of cumulative percentages of variance (obtain-
able by adding the successive components of Table 5.1) as intra-class
correlations supports this interpretation. Two randomly chosen individuals
from the same family will typically correlate highty. Moving down a level to
penera does not increase the correlation much: genera do not add
substantially new information.

The nested ANOVA, then, provides a suggestion of the taxonomic level
that should be used for analysis. Families or orders would be chosen as the
units of analysis for the variables in Table 5.1, because around the family
level there is a precipitous decline in the percentage of variance that a
taxonomic level accounts for (statistical tests are available: Sokal and
Rohlf 1981). However, any taxonomic level could, in principle, be chosen
depending upon the distribution of variance in the characters being
studied. Choosing a higher node greatly reduces the number of degrees of
freedom in analyses. This accords with the belief that the additional
‘degrees of freedom’ obtained from lower taxonomic levels are not really
very free at all. Thus, degrees of freedom and some variability are given up
in return for what is hoped are increasingly independent data points.

The higher nodes method represents an early attempt to give a statistical
justification for not treating species (or genera or even some higher taxa) as
independent points. In addition, it has often been used to suggest a
taxonomic level at which independence can be more or less assumed?.

Harvey and Zammuto (1985) used the higher nodes method to
investigate life history variation in mammals. These authors were
interested in the idea that mortality patterns should be strongly correlated
with the age at which individuals reach maturity, independently of adult
body weight. Others had argued that this need not be so (e.g. Western and
Ssemakula 1982). Across species, we may test the prediction that variation
in mortality rates should correlate with the age at which different species
reach maturity when body size is held constant: high mortality rates must
be associated with early ages at maturity lest individuals die before
successfully reproducing.

Harvey and Zammuto used Millar and Zammuto's (1983) data on age at
maturity and life expectancy in 29 mammal species. Life expectation at

12 The method has been used to investigate variation in life history, morphology,
metabolism. sleep, and other behaviours including patterns of habitat utilization, particularly
in birds and mammals. (e.g. Harvey and Clutton-Brock 1985; Gittleman 1986: Harvey er
al. 1987: Elgar and Harvey 1987: Elgar et al. 1988: Bennett and Harvey 1985a, b, 1987:
Read and Harvey 1989: Sherry er al. 1989: Promislow and Harvey 1990).
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birth measured from natural populations of mammals living in approxim-
ately constant age-structured populations was taken to be an inverse
measure of adult mortality rate. Harvey and Zammuto chose to analyse
genera means instead of species because of concerns that the individual
species did not represent independent points. When all variables were
logarithmically transformed, life expectancy and age at maturity were both
positively correlated with body weight (r = 0.87, 0.89, respectively, n=
25, P <0.001). However, the correlation between the two life history
variables remained significant after controlling for the effects of body
weight (r = 0.89, n= 25, P <0.001). This correlation may arise, however,
because life expectancy is partly a function of age at maturity (demo-
graphic reality dictates that some individuals must survive to breed or the
species would be extinct). So, Sutherland, et al. (1986) conducted the same
test, this time using life expectancy from age ar maturity instead of life
expectancy at birth. The correlation controlling for body size remained
significant and the two body-size-corrected measures are plotted against
each other in Fig. 5.6.

Another example of a higher nodes approach comes from an analysis of
the hippocamapal complex in birds reported by Sherry et al. (1989). Some
bird species collect and store large numbers of food items, each in a
separate place, before retrieving them at some later date. In contrast,
many other bird species immediately consume the food that they gather.
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Fig. 5.6. The deviations from the logarithmic regression of age at maturity on
body weight plotted against the deviations from the regression of life expectation at
maturity on body weight. A positive deviation indicates that the life history variable
was larger than would be expected on the basis of body weight, a negative deviation
indicates the opposite. The two size corrected measures are highly correlated (r=
0.76, P<0.001). The data points are generic averages of constituent species values.
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Sherry and his colleagues were interested in the idea that storing and
retrieving food places demands on the memory of food-storing species not
experienced by species that do not store their food. They suggested that
food-storing birds might have enlarged hippocampuses as a result, because
the hippocampal complex is thought to be involved in spatial memory.
Food-storing versus non-food-storing does not vary independently
among species belonging to different families of birds. For example, many
North American chickadees (Paridae), nuthatches (Sittidae), and jays and

crows (Corvidae) store food while species in other passerine families and

subfamilies do not. Sherry et al. (1989) measured the size of the
hippocampal complex for 23 species from 13 passerine subfamilies, and
performed their analysis across subfamily averages. They justified this by
the fact that ten of the subfamilies in the data set were represented by only
non-food-storing species while the other three subfamilies were represen-
ted by only food-storing species. The food-storing subfamilies had large
hippocampal complex sizes relative to both their body weights and to the
volumes of their telencephalons, which is the part of the brain within which
the hippocampus complex is situated. Figure 5.7(a) plots body-size-
corrected hippocampus complex volumes for each subfamily of birds in
Sherry er al.’s data set.

Krebs ef al. (1989) were able to use an interestingly expanded data set to
tackle the same problem. Two of the food-storing families, the Paridae and
the Corvidae, contain some species that do not store food. Krebs et al.
measured the hippocampus size of species that store food and those that do
not store food within each family. Do the non-food-storing members of
these families have relatively smaller hippocampuses than their food
storing relatives? They do, as can be seen in Fig. 5.7(b). Furthermore, the
Troglodytidae which are non-food-storers have relatively smaller hippo-
campuses than the closely related food-storing Sittidae. Krebs er al.’s
analysis goes beyond comparing higher taxon means by also examining
variation within higher taxa.

What ggsumptions about evolution and the phylogeny of species are
embedded in the higher nodes method? The method treats the higher
nodes as independent points in analyses. Technically, this means that the
higher nodes must have a phylogeny that forms a simultaneous radiation
pattera-hi in Fig, 5.1. Thus, for example, if families were the unit of
analysis, the phylogeny must be such that all of the families simultaneously
radiate from a single ancestor common to the entire class. All branches
leading to families must be the same length to ensure equality of expected
variances. Branch lengths can be ignored if the amount of evolution is
believed to have been independent of time and yet equal in each branch
(e.g. punctuational change). The branches leading to orders must have a
length of zero: any order branch with a non-zero length would possibly
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“introduce phylogenetic similarity among its families (there are other

models in which the families could be independent but this is the simplest
and most general). Further assumptions. are built into the family means
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“Tt would be very unusual for any phylogeny to have the form required for
the higher nodes method to be correct technically. In practice, however,
this does not mean that conclusions drawn from all higher nodes analyses
are incorrect. The most obvious worry in using a higher nodes approach is
that the higher nodes may not be independent for the same sorts of reasons

_that species are not independent. One should, for example, be careful to

examine the data to see if the result depends upon the contribution of any
one cluster of points that share an immediate ancestor. The relationship
can also be examined separately within taxonomic groups. For example,
Krebs et al. (1989) were able to show that in all three cases where pairs of
closely related taxonomic groups could be compared, the hippocampus
volume was greater in the food-storing group. However, even if all
of the assumptions of the higher-nodes method were met, it would still
have the unavoidable limitation that information from lower taxonomic
levels is lost, along with degrees of freedom for statistical tests.

5.5 Stearns’ phylogenetic-subtraction method

A method for directly subtracting from the species’ data the variation
associated with phylogenetic similarity (or taxonomic similarity where
taxonomy is used to stand in for phylogeny) was developed by Stearns
(1983). Stearns’ method, although motivated by the same concerns as the
higher nodes method, proceeds in a manner opposite to it:

Stearns proceeds on the assumption that the portion of the total
variation associated with differences among higher nodes represents
lineage-specific variation that is not appropriate for testing questions about
adaptation at the species level. Stearns statistically removes from the data
the lineage-specific variation associated with higher nodes, and analyses
the remainjng variation. Stearns’ (1983) analysis of mammalian lite”
histories provides an example. Differences among orders and among
families within orders were assumed to represent effects of phylogenetic
similarity present 10 the species data points. Stearns simply subfracted irom
each species data point the mean value for its order. Species’ values were
then Iree of similarity associated With differences among orders. This
procedure was repeated using family means, thus leaving a set of residual
data points for species that were free of differences associated with families
or orders. Stearns found that substantial covariation existed among
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The correlation between the residuals and any one or combination of the
Jdiscrete phylogenetic dummy variables in Box 5.1 will always be exactly
sero. Stearns (1983) removed taxonomic similarity due to orders and
i1milies. However, as Box 5.1 shows, it is possible to remove the effects of
raxonomy down to the genus level, or more generally, down to one level
above the lowest level represented in the data set. This procedure for
removing variation associated with phylogeny can be applied to any
sumber of variables, and then the relationships among them tested.

Returning to the conceptual model outlined at the beginning of this
chapter, what phylogenetic structure is implicit in Stearns’ approach?
Stearns’ approach mmmc%bﬁngﬁmgmgm chose families),
the phylogenetic or taxonomic groups are independent. The simultaneous
radiation of Fig. 5.1 produces independence, buf imagimation is required to
«ce how this model can be applied to groups that cannot be thought of as
sharing an immediate common ancestor. The effect of removing variation
associated with phylogeny is to make the mean value of the trait equal to
Jero within the lowest level groups controlled for in the analysis. Thus, in
the example in Box 5.1, the mean value of the residuals within genera is
cxactly zero. In this statistical sense, then, the species can be thought of as
having a common phenotypic starting point of zero. In Stearns’ life history
study, the family level was the lowest level controlled for, and so the

implicit phylogeny must have all species in all genera radiating from a
common starting point.

We have applied Stearns’ approach to the Millar and Zammuto (1983)
data set to illustrate the difference between this approach and the higher-
nodes method. The data set contains six different orders and 18 families.
Harvey and Zammuto (1985) and Sutherland er al. (1986) conducted their
analyses of life expectancy, age at maturity, and body size across genera
means (n =25). We used multiple regression to remove the variation in
{hese three variables that is associated with order and family differences
among the 29 species. Then we repeated Harvey and Zammuto's analyses
on the species data with order and family effects removed.

The dummy coding was done in a manner analogous to that in Box 5.1.
Five dummy codes were required to control for the six orders. Only six
additional codes were required to control for differences among families
within orders because of the way that families were distributed among the
orders. With additional codes for genera within families and species within

genera, it is possible to reconstruct the nested analysis of variance table for
this data set. The species are taxonomically diverse in this data set, so
many families are represented by just one or two species. Because of this,
the phylogenetic differences among orders and families account for a very
large percentage of the total variation among the species.
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Table 5.2 Taxonomic distribution of variance among the characters used for the
analysis of life history variation and mortality among placental mammals.
Tabulated values are percentage of total variance accounted for at successive
taxonomic levels estimated from a nested ANOVA on logarithmically transformed
species averages. (Data from Millar and Zammuto 1983).

Among:  species genera families orders

Within:  genera families orders class
Variance component:* e oo szfa a %)
Body weight 1 2 12 85
Age at maturity 1 3 36 60
Life expectation at maturity 2 2 34 62

*Following eqn (5.2), each variance component in the table has been multiplied by
100 and divided by oot

By using just the dummy codes for orders and families, the 29 species
data points are statistically independent of phylogenetic variation associ-
ated with those levels. We then further controlled both life history
variables for body size, and plotted the residuals against each other.
Fig. 5.8 plots this relationship which although positive is not as strong as
that in Fig. 5.6. Controlling for phylogenetic relationships and for body
size, there is no longer a significant relationship between age at maturity
and life expectation at maturity (r =0.35, d.f. = 16, P >0.15; note that the
degrees of freedom are equal to the sample size minus the number of
control variables minus 1: 29-12-1).

An investigator using Stearns’ method on the Millar and Zammuto data
set would have reached a different conclusion from that which Harvey and
Zammuto (1985) and Sutherland et al. (1986) reached using a higher nodes
approach. Which would be correct? Both would be correct for certain
kinds of conclusions (Pagel and Harvey 19884). The conclusion-that therc
is not significant covariation between the life history variables after
conirolling for differences associated with phylogeny is correct for this data

set. So is the conclusion that there is significant variation across genera.

T T T T e ——
T t cerns what we should make of the difference.

Variation among higher nodes is removed by Stearns’ method and
variation at lower levels is retained. The higher-nodes method analyses the
variation at higher levels and averages over the lower levels. Each method
uses the information that the other method discards! Stearns assumed that
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Fig. 5.8. The relationship between age at maturity and life expectation at maturity
for mammals after controlling for body weight and phylogenetically correlated
variation in each variable. The correlation is not significant [r=0.35, d.f.=16 (see
text), P>0.15]. 29 species are represented on the figure, but 6 data points overlap at
0,0.

variation at higher levels should be attributed to ::ommo-mmo&mn H.Ho:am w:.g
thus was inappropriate for testing questions about function. E_.m point 1s
that the adaptive variation is that which is independent of differences
associated with phylogeny. The investigator Usin : od should
explain why variation amon higher taxonomic groups is ﬂ:ocmr» to be
inappropriate_for _testing this functinonal question. .%ro higher-nodes
Thvestigator must' provide an explanation of why 1t is felt that the
differences among the higher taxonomic levels are not confounded by
other taxonomic differences. ) .

Consider, for example, that all of the rodents have early ages at maturity
and short life expectancies from maturity not because of a omc.mw_
connection between the two, but for some other reason associated with
being a rodent. This would represent a taxonomic Q.u:mo.:.a that ﬂ.:o
Stearns’ method would remove. Thus, the higher nodes investigator using
the order as the level of analysis should demonstrate that the relationship 1s
found within orders, like the rodents, as well as across them.

Both sides of this debate have something to offer. However, we shall
show in a later section how it is possible to get around the conflict Umgwm:
these two methods by using techniques that analyse the covariation
between traits within taxonomic (or phylogenetic) groups. There is no
need to throw out the variance at either the lower or the higher levels. .>:
of the variation in the data can be used to test ideas about the correlation

between traits.
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5.6 Phylogenetic autocorrelation method

Cheverud et al. (1985) describe a method for partitioning phenotypic traits
into phylogenetic and specific components that is conceptually similar to
Stearns' method. Cheverud er al. predict a species’ phenotype on the basis
of the phenotypes of other species in the sample. More closely related
species, such as those in the same genus, will typically be better predictors
than more distantly related ones. Accordingly. the phenotype of a focal
species that is closely related to many other species in the sample will be
better predicted than one that does not have many close relatives. This fits
with our intuitive feeling that closely related species do not each represent
an independent instance of the evolution of their trait. However, species’
phenotypes will not be perfectly predicted, even when they share many
close relatives. Cheverud et al. (1985) use this specific portion of the
phenotype to test for correlated relationships among variables. Their
method, then, although conceptually similar to Stearns’ (1983), differs by
employing an explicit evolutionary model to estimate variation due to
phylogenetic effects.

Cheverud et al.’s phylogenetic autocorrelation method uses a linear
autocorrelation model to partition the total variance in a trait that is
measured across species into the sum of phylogenetic and_specific
variances, plus the covariance between the phylogenetic and specific values
ST The trait. The model represents the trait y as a linear combination of

ivalueyy

phylogenetic and specific effects according to:

y=pWy+e. (5.3)

iroﬁalkwm the vector of length n containing the n species’ data points, pis
a scalar ‘phylogenetic autocorrelation coefficient’, W is an n X n
‘phylogenetic connectivity matrix’, pWy is a vector of predicted y values
representing the phylogenetic portion of y, and e represents the vector of
residual values of the trait that cannot be predicted by the vector pWy. It is

_e that is used to analyse whether there is covariation between traits that is
independent of phylogenetic effects. Cheverud et al.’s (1985) model assigns
both parallel evolution and variance due to the interaction of the
phylogenetic and specific components solely to the phylogenetic effect.

The matrix W is used to account for the phylogenetic relatedness of
species. The phylogenetic portion of the attribute y, given by the vector
pWy, is just a weighted sum of the phenotypic trait values of each of the
other species in the data set, scaled by the factor p. The scalar quantity p |
roughly a measure of the correlation between the observed and predicted
values of y, where the predicted values are equal to pWy. Thus, if the
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actual values of y are largely predictable from phylogenetic relatedness,

t will be high. . . .
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y = p Wy + e

10 6.12 3.88
8| _ |64s| . |1ss
3 6.21 —-3.21
4 6.21 —-2.21

This example shows how the matrix product pWy produces a predicted y
score for each species, and the vector e is just the residual difference
between y and the predicted y. Species that are closely related to each
other have a greater amount of their trait attributed to phylogeny. Species
3 and 4 have the same predicted value of y because they are congeners.

Our illustration uses an arbi d
values have the same mean-as-the-actual-values—-In practice, Cheverud et

al. use a maximum likelihood procedure for estimating p.

Cheverud et al. (1985) used their model to study body size dimorphism
in primates. Four variables, body size, mating system, habitat, and diet,
were studied for their association with the extent of sexual dimorphism in
body size for 44 primate species. The phylogenetic autocorrelation
procedure was used to define phylogenetic (pWy) and specific (e)
components for each trait. Then the eight components plus the phylogen-
etic portion of size dimorphism were used to predict size dimorphism.
Table 5.3 shows the unique contribution of each variable in terms of the
percentage of the variance in size dimorphism that it predicted.

Table 5.3 Proportions of total variance in sexual body size dimorphism explained
by phylogenetic and specific sources of variance (after Cheverud et al. 1985). Note:
inclusiont of the specific proportion of sexual dimorphism would (arbitrarily) have
led to 100 per cent of the variance being accounted for.

Percentage of variance accounted
for by sources of variance

Trait Phylogenetic Specific
Mating system <1 <1
Body weight 28 34
Sexual size dimorphism 1 -
Habitat 2 4
Diet <1 2
Interaction among traits 19 2
Total 50 42
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Fifty per cent of the variance in size dimorphism can be accounted for by
the phylogenetic components, and an additional 42 per cent by the specific
components.

As with Stearns’ procedure, potentially the majority of the variation is
assigned to phylogenetic components and is treated as non-adaptive.
Investigators should be aware of this and provide an explanation of why
they feel that variation among higher taxonomic groups should not be used
to test questions about function and adaptation.

5.7 A maximum likelihood approach

Lynch (in prep.) reports a method that, like Cheverud ef al’s (1985)
method relies on a statistical model to partition each species’ phenotypic
trait value into components associated with and components independent
of phylogeny. Unlike Cheverud er al., however, it is the phylogenetic
component that Lynch uses to test the comparative relation.

Lynch borrows ideas from quantitative genetics to partition species’
phenotypic values into three components, two representing phylogenetic
variation, and one representing variation that is independent of phylogeny.
Each species’ phenotypic mean is seen as a combination of an overall
phylogenetic effect, a component representing the ‘heritable additive
evolutionary value of the character’, and a residual component. The
overall phylogenetic effect is analogous to a grand mean on the trait. The
interpretation of the additive heritable component is that it represents
something akin to a breeding value: a species’ additive effect is the
expected phenotype of a descendant of that species. The sum of the first
two components is the overall ‘heritable component of a particular
realization of the evolutionary process’. The residual effect represents non-
additivity of genetic effects, environmental effects, and sampling error.

Knowledge of the across-species variance-covariance matrices of the
additive effects and of the residual errors is required to estimate the
additive effects and the overall effects. The matrix of additive effects, in
turn, depends on a matrix that measures the true phylogenetic relation-
ships among taxa. For example, all species are perfectly related to
themselves, less so to sister taxa, and so on, in a fashion similar to
Cheverud et al.’s (1985) matrix W. The phylogenetic relationships matrix is
estimated from the phylogeny. The relatedness of two species is taken as
the proportion of their total path lengths that they share. The additive
effects and the overall effects are estimated by a recursive maximum-
likelihood procedure. Using initial arbitrary values of the additive effects
and residual errors, the variance-covariance matrices can be found. This,
then, leads to new estimates of the additive and residual effects, and so on
until a stable solution is reached. Lynch reports that the maximum-
likelihood algorithm usually converges, or at least leads to a region of
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results. Statistical convergence may also be stymied by multiple peaks in
the likelihood surface.

Lynch’s method, by using explicit statistical criteria to take into account
the non-independence of taxa, has much to recommend it. Like Cheverud
et al.’s (1985) technique it avoids altogether the problem of reconstructing
ancestral character states, instead conditioning all tests on the variation
among extant species. It is difficult to judge at this point how well Lynch’s
approach will work, and how it will manage with poorly known
@:E@oiom. It is critical to get the estimates of the variance-covariance
matrices correct in order to adjust the species additive effects for their
strong phylogenetically based lack of independence. It may also be
unnecessary, as we shall suggest below, to partition the species’ pheno-
types as Stearns (1983), Cheverud et al. (1985), and Lynch do. Neverthe-
_wommu maximum-likelihood methods such as Lynch’s deserve more atten-
tion.

5.8 Independent comparisons methods
QAll of the methods reviewed so far, with the exception of a species
regression, make a distinction between variation associated with phylo-
geny, and variation that is independent of phylogeny. The methods to be
described in this and the following sections us€ dli of The variation in a trait
to test for a comparative relation, and they do so without partitioning the
traits into phylogenetic and non-phylogenetic components. Independent-
comparisons methods are able to make use of all of the data by recognizing
that what is phylogenetic inheritance at one level of a hierarchy may
constitute part of an adaptive difference at the next highest level.

This discussion is based on logic outlined by Felsenstein (19834). Figure
5.3 shows a branching phylogeny for eight species. Focussing on a portion
of this phylogeny, the range of values including the two species that split
from node n4 and the two species that split from node 15 is largely the
result of a phylogenetic difference that evolved once between »n4 and n5.
That is, most of the variation among these four species in a typical
phylogeny would have already been present between the two higher nodes.
However, there are three degrees of freedom among these four species:
the difference between species 1 and 2, the difference between species 3
and 4, and the difference between nodes n4 and n5.

Assume that changes along the branches of the phylogeny can be
modelled by a Brownian motion process such that, as above, successive
changes are independent of one another, and that the expected total
change summed over many independent changes is zero. Then, the three
pairwise differences (species 1 versus 2, species 3 versus 4, and n4 versus
nS5) are independent of each other. This is because, for example, the
difference between species 1 and 2 reflects only the evolutionary changes
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that have taken place since they split from their common ancestor (n4). All
similarity between species 1 and 2 that is due to their shared phylogenetic
history will be, in effect, subtracted out. The same logic applies to species 3
and 4. Their difference in turn will be independent of the differences
between species 1 and 2. Finally, the difference between nodes n4 and n5
reflects only the evolutionary events that have happened since they split
from their common ancestor, and this difference will be independent of the
other two.

The three comparisons together account for all of the variation among the
four species by dividing the variation into three separate evolutionary
events. Each event reflects the difference between the evolutionary
changes in two branches of the tree. So, the advantage of independent-
comparisons approaches is that, by partitioning the variation appropri-
ately, it can all be used to assess the comparative relationship.

More generally, in a given branching phylogeny we might calculate the
difference in Y and difference in X between the species within each of the
lowest level clades, then again at the next highest level, and so on until we
compare the two highest nodes of the tree. The important point is that each
of these relationships represents under the null hypothesis an independent
instance of the evolution of the relationship between Y and X. Thus, any
covariation between Y and X that is present among the species sharing a
common ancestor is phylogenetically independent of the covariation
between Y and X among the species sharing a different common ancestor.
The same argument applies to each similarly defined pair of higher nodes.
The set of differences between Y and X provides a way to test whether
changes in Y and X are correlated. Under the null hypothesis that
evolutionary changes in Y and X are unrelated. a positive difference on X
should be associated with a positive difference on ¥ no more often than
with a negative difference. A preponderance of positive (or negative)
relationships within taxa, then, is evidence against the null hypothesis.

Box 5.2 provides a simplified summary of the procedure used to produce
and compare independent comparisons. Note, however that path lengths
are ignored in the example and that higher nodes are calculated as the
average value of lower nodes. We shall discuss both of these issues later.

Later in this section we shall discuss three methods that use independent
comparisons. The methods all rely on the same independent-comparisons
logic but differ in assumptions and statistical manipulation of the data.
Before discussing the three independent-comparisons procedures we make
a brief digression to describe the nested analysis of covariance.

5.8.1 A brief digression: nested analysis of covariance

The nested analysis of covariance does not make use of the logic of
independent comparisons, but it does exploit the fact that species naturally
form a nested hierarchy. Following brief sorties by Dunham and Miles
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Box 5.2. The independent comparisons method for two characters
in a single phylogeny.

C:aaa a Brownian iomo: model of evolution, d1, d2, and d3 provide
independent comparisons. Path length differences are ignored in this

illustration.
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(1985) and by Martin and Harvey (1985), Bell (1989) suggests a novel use
of nested analysis of covariance to analyse comparative data.

A nested analysis of covariance analyses the covariation, or equival-
ently, the correlation between two or more variables separately within
each of the groups'in a nested hierarchy. Applied to comparative data, the
method finds a relationship between two or more variables separately
within each taxonomically or phylogenetically defined group in a data set.
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I'he separate within-group relationships can then be combined to form a
pooled estimator of the within-group correlation between two variables. A
pooled estimator of the correlation between two variables is analogous to a
pooled estimator of the within-groups variance in an ordinary analysis of
variance, except information about the covariation between two variables
rather than information about the variation of one variable is used.

Species 1 2 3 4 5 6

Fig. 5.10. A phylogenetic tree used to illustrate the nested analysis of covariance
method.

Consider the hypothetical tree of Fig. 5.10 showing three species in each
of two genera. Ignoring the genera classifications for a moment, let opyy
represent the phenotypic covariance between Y and X across the six
species. The covariance is defined as the correlation between X and Y
multiplied by the standard deviations of X and Y-

Opyy = D_u.,..,.qﬁu.,.o.v‘,; AM n:

Now, classifying the species into their genera, it is possible to partition
the phenotypic covariance into two components, one representing the
covariation between Y and X within genera, and one representing their
covariation across genera:

Opyy = Oway + T Axy Am mv

where the subscripts ‘W’ and "A’ refer respectively to ‘within® and
‘among’. The covariance within genera is the sum of the separate
covariances in each of the two genera. The individual within-genus
covariances are not influenced by phylogenetic differences among the
species if the genus is a monophyletic group. The covariance among genera
is calculated across the two genera means. This covariance expresses a
phylogenetic difference between the two groups of species. Thus the
overall covariance among the species is a combination of phylogenetic and
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non-phylogenetic or evolutionary components. The within-groups covari-
ance represents an evolutionary relationship between Y and X that is not
_:mcozomm by differences in phylogeny among the species. This is truc
_umow.:mm, if Fig. 5.10 is an accurate representation of the true phylogeny
species 1 through 3 share their phylogenetic history as do species pw:amo:m:.
6. This method can be applied to all levels of a phylogeny. For exam _mq._
pooled estimator of the covariance between Y and X calculated m@o,:.g
genera means within .mmBEom, has an analogous interpretation to the
MMMMM“O_MWMMSW species within genera. Similar partitionings can be madc
wa.: (1989) applied the nested analysis of covariance method to study the
am_m:o:m_‘% between litter mass and gestation length in mammals Wo:,
variables are highly correlated with body weight in mammals and mm as a
first step, Bell statistically removed the association of both <m1mzmm, ,S:“
anv\. weight. All analyses were then conducted on relative litter mass and
R_m.::\m gestation length, where the relative values are defined as the
ammacm_m. from the respective regression lines for the two variables on adult
body weight. Bell compiled 574 observations of litter mass and gestation
length on 370 species, then conducted a nested analysis of covariance on
the two body-weight-corrected measures, The results are given in Table 5.4
é:oa.q for ease of interpretation, Bell has converted each of E.o
covariances to a correlation by dividing by the product of the two standard
.ao<._m.:o:m. The correlations in Table 5.4 are found by pooling all of the
ndividual within-group correlations at a given taxonomic level.

Hmw_.m .m.a Zm,ﬁma. analysis of covariance results for relative litter mass and relative
gestation length in uwo mammal species. The correlations are estimated for the
taxonomic level indicated and are nested within the next highest level. For

a e . ati . . .. s
e€xa :—U._O, the w Z::nmﬁmﬁ_ﬂm correlation is that for _SQ;\_QSNLm w 1 =
. ithin Species. NE

Mwwn_v:oa_o Degrees of Estimated within-
freedom group correlation
Superorder -
Order pw Hm
Suborder 6 0 M@
Family 52 o.mm
Subfamily 47 ~0.01
Genus 120 o.mH
Species 128 Io.Ho
Within species 204 o.wu
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Bell was able to calculate a pooled correlation among individuals within
wpecies because more than one observation was available for many of the
wpecies. The results show substantial correlations within species, and then
n among families within suborders, and suborders within prders.

The main difference between Bell’s approach and the methods reviewed
previously in this chapter is that Bell’s analysis makes use of all of the
variation in the data set to assess the comparative relation. Variation
among species within genera, genera within families, and so on to the
highest nested level is all used to investigate whether two variables are
correlated. This method is very close to what we have called ‘independent
comparisons methods’ in that it avoids phylogenetic influences by looking
scparately within taxonomically or phylogenetically defined groups.
Provided that all of the members of a group share an immediate common
ancestor, there is no phylogenetic variation within the group, and the
correlation between two variables within that group represents evolution-
ary change since they diverged from their common ancestor. If the groups
are not monophyletic then some phylogenetic differences will be included
in the within-groups covariance.

Combining the information from different taxonomic groups and levels
requires assumptions about phylogenetic branch lengths (assuming a fixed
vradual model of change). The branch lengths leading from each common
ancestor to their respective descendant taxa must be the same length in
cach group. If they are not, then the expected variation within a taxonomic
group with longer branch lengths will be larger than that within a taxon
having short branch lengths. Bell combines information only from the
same taxonomic level, thus, having only to assume that all taxa at the same
level have equivalent branch lengths.

The pooled estimators combine information from different groups. This
gives more weight to groups that have more subtaxa. For example, a genus
with seven species will contribute a larger share to the pooled estimator
than a genus with two species. Such a weighting would be appropriate if the
true phylogeny within the genus was a real simultaneous radiation of the n
subtaxa. Then, there would be n-1 independent pieces of information
among them. But consider that the true but unknown phylogeny is not a
simultaneous radiation. Then the n subtaxa will not be independent and
treating them as such will spuriously give more weight to larger groups (in
the limiting case of no phylogenetic classification whatsoever, the nested
analysis of covariance method would be identical to a species regression,
with all species nested within a single higher node). Ideally, we should like
to know how to weight such groups where we have reason to believe that
the n subtaxa are not independent, but at the same time the true phylogeny
is unknown.

The methods that we discuss in the following sections address the
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rob L . .
m o:m._: of é.m_mr::m E\ allowing each taxonomic group to contribute vnl
ne piece of information that is not weighted by the number of subtax.

we VTN: now vaOCﬁv :‘:‘00 met A— .m €4 > »
#TO S :)_DH QO Zu 5 i
volut .O:D,_v\ n OA_O JOT Uﬁvn\ﬁ_ ona ﬁ__mr« renl

5.8.2 Felsenstein’s method of pairwise independent comparisons

ﬂm_mm:mam.z (1985a) was the first to develop a method fo S
comparative relationships based on the logic of comparing pairs M 81._.:_,
or r_mrm.a nodes that share a common ancestor (Section momwu m,m_w mmﬂ_m,
%,M:Sa _w%mea on mamﬁoiaw: motion model (Section m..w.v o.ﬁ m<mmw_www___:,
nge. Other models of change i : "
intractable statistically Qum_mo:mﬁomm GM%. mﬂﬂmw_”m,ﬂ:ww:“mmwﬁM:”crm.ﬂ the
.Q:o U.S:or,:‘_m phylogeny, including the lengths of the Uﬁm:o_ro_ﬁnomm H:ﬁ: ﬁ.:_f
in_units Ao* expected variance of m<o_:zor:m5\ change. is ww m%p.,.
_:mo:dm.:o: allows the calculation of a set of ooﬂ:cm:momm Jéooﬁ,«z:. )
data points, each of which has the same expected mean m:aw e
the null hypothesis. ’ vertanee unde
Oo:m,_ao.a the phylogeny in Fig. 5.11. Following the logic develope
above for Eamwo:ama comparisons methods, and aﬂrmi:m on Fel e owﬁ,;
(1985a) article, the differences between the two pairs of species ‘mﬂmﬂmﬂmi .
of the tree, represented by (X1—X2), and (X3—X4), 3:@@0 m:%o mMamm”
of each other. By the same logic the ditference between the Eor% nodes
.ammmog by (X1 + X2)/2 and (X3 + X4)/2 is another oo_dwﬁ.mmom and 1 5
independent of the first two. (Here we assume that vl =12 = i,lawp M:_m
mzwﬁ ﬁ \.c,o. _M .?:r _m:wﬂ:.m vary the comparisons change moBm,\,,\:mr
Felsenstein's Oﬁ_m_:m: paper gives tormulae for the general case). Calculc
ng :ﬁ comparisons among the higher nodes this way ensures . 2%: W_T
Brownian motion model, that the comparisons are B‘ECm,:V\ E,amvmhaﬁw:m

Y1 Y2 Y3 Y4

X1 X2 X3 X4

vi v2 v3 va
vb v6

5.11. A phylogeny of four species. X; and Y; (i = 1-4) represent the states of

phenotypic characters in species i. The v; (f

‘ | . i (j = 1-6) define the t i i [
ch ) i ¢ time in

m%mnﬁma variance of evolutionary change spent evolving along each bra w::m M»

tree. (After Felsenstein 19854). nen e
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Latistically. Calculating the same three comparisons for the Y would yield
iree pairs of points that could be used to ask whether changes in the X
_.riables go with changes in the ¥ variables. In general, with 7 species, we
.. find a set of 71— 1 mutually independent comparisons in a bifurcating

hee.

Before discussing the use of the independent comparisons we should
point out why such comparisons are used rather than those that measure
e independent evolutionary change along each branch {(which we
\cferred to in Chapter 1 as ‘directional” methods). We could use the latter
I we had a method for reconstructing ancestral conditions that was
mdependent of the descendant character states. But consider that, in
|.clsenstein’s method for example, the higher nodes are roughly equal to
{he arithmetic means of the lower nodes. As the sum of the deviations of a
ot of scores around their mean must sum to zero, this means that we
cannot use both scores for a pair of species. But we can Uuse their
ditference.

The set of differences are independent under the null model, but they
will not all have the same expected variance. Here is where the branch
lcngths and Felsenstein's evolutionary model are put to use. Felsenstein
models the evolution of a character along its branch by a process of
Brownian motion. If change is independent in each unit of time, then after
one unit of time the character will have accumulated o? units of variance,
where o2 is the variance of the process (For ease of discussion. we shall

assume that of is constant throughout the tree. But it need not be.).

R\
‘Then, over v :::Eqm. This means that the
yarious observations on X will have the same varnance only if their
branches are of the same length.
However. having knowledge of the variance makes it possible to scale

cach X score to have a mean of 0 and standard deviation of 1:

(X-0)

Jvoi (5.6)

The same calculations can be performed for the Y variables also using
the voy (however o for the X variable need not be equal to o® for the Y
variable). Then, each difference between a pair of species or higher nodes
will also be a variate with a mean of 0 and a standard deviation of 1. If the
evolution of the characters can be described by Brownian motion, then the
set of comparisons on X and Y can be regarded as having been drawn from
a bivariate normal distribution with means of 0. standard deviations of 1,
and unknown correlation parameter, p- The null hypothesis is that p equals
0.
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Sessions and Larson (1987) used Felsenstein's method to test whether

mm:om.dm size in plethodontid salamanders is related to developmental rat
The ‘junk U.Z>, hypothesis predicts that junk DNA will accumulate in ﬂ:m,.
genome until the costs of transcribing it impose too great a cost on Sm
organism. This leads to the prediction that genome size (as measured Un\
the C-value, the weight of the genome in picograms) should be inv W
related to measures of the developmental rate of a species o
mgzo:m. and Larson identified 18 independent pairwise differences or
contrasts in the family Plethodontidae (Fig. 5.12). Higher nodes éoo_
reconstructed according to a parsimony procedure (Farris 1970: o
O:m?mw 3). Difference scores were calculated for each of the 18 mm?wom
comparisons for three variables: C-value, and two measures of %96_ -
mental rate (limb differentiation rate and limb erowth rate). Estimat ovw
the branch'lengths in units of time were ogmmsoau?oa BOEQ.:B %:M oo

_ul!ﬂ Hydromantes italicus

5 H. platycephalus
Pseudoeurycea bellii

P P.leprosa

Chiropterotriton lavae

Ensatina

Aneides ferreus

A. flavipunctatus

A. lugubris

A. hardii

Plethodon larselli

. elongatus

. vehiculum

dunni

cinereus
richmondi
welleri

Jordani

. yonahlossee

. glutinosus
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Fig. 5.12. The phylogenetic tree of the Pleth i
: odontid salamanders used by Sessi
and Larson (1987) for their comparative analysis of limb &mﬁm::.mmosv\ENWMMM

genome size. H\OQ@HM Nmm_mbma to nodes of the t present
g ree re
. . sen _Dawﬁnsamdﬂ contrasts
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They tested their hypothesis for both variables by means of a rank
relation of the unstandardized pairwise comparisons. Limb differen-
jon rate but not growth rate was significantly inversely related to C-
svulue. Large positive differences in the C-value within clades tended to go
with large negative differences in the limb differentiation rate within clades
(r, =-0.47, P <0.025; Fig. 5.13).

1.5
1 ©2C J

0 -

Differentiation N P
sts

rate contra _1 :n>

—2 - ¢} R

-2.5 T T T T T ! i
o 2 4 & 8 10 12 14

C-value contrasts

Fig. 5.13. Limb differentiation rate contrasts plotted against genome size (C-
value, mass of DNA per haploid nucleus) contrasts for Plethodontid salamanders.
The letters designate the nodes in Fig. 5.12. (After Sessions and Larson 1987).

Another application of Felsenstein’s model is reported by Losos (1990),
who studied locomotion and morphology in Anolis lizards. These lizards
exhibit three locomotory patterns: running, jumping, and walking. Losos
was interested in whether species that use one particular form of
movement over another have morphological specializations for that
behaviour. For example, species which typically run, such as sit and wait
predators, may have evolved longer hind limbs.

Data on the percentage of movements attributable to running, jumping,
and walking were collected from field observations of the 13 Jamaican and
Puerto Rican Anolis species. Measures of fore limb, hind limb, and snout-
vent length were obtained from 15 individuals from each species. Then,
Losos used Felsenstein’s method to analyse the relationship between
morphology and the percentage of total movements that were walks.
Twelve pairwise comparisons were calculated from the phylogeny in Fig.
5.14. Comparisons were standardized using branch length information
obtained from literature sources. Hind limb length was negatively
correlated with walking frequency controlling for body size (walking
frequency as a percentage of all moves, r =-0.75, P <0.01).

To summarize this section, Felsenstein’s (1985a) method finds a set of
independent pairwise differences or contrasts, each of which is scaled by its
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. grahami

. opalinus

. lineatopus
. garmani

. valencienni
. sagrei

. cristatellus
. krugi

. pulchellus
. poncensis
. gundlachi

. Stratulus

. evermanni
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Fig. 5.14. Phylogenetic relationships among 13 species of Jamaican and Puerto
Rican species of Anolis lizards. The 13 species allow 12 independent comparisons,
labelled A to L, between the pairs of daughter taxa derived from each node. This
phylogeny was used by Losos (1990) to examine whether evolution in limb
morphology has been associated with evolution in locomotor propensities and
movement (see also Section 5.10 and Fig. 5.22 in which this phylogeny is used to
illustrate directional methods-—cach of the 12 nodes provides for two ancestor-
descendant comparisons). Path lengths, not given here, were estimated by Losos
using immunological and electrophoretic distance measures.

expected standard deviation. Expected standard deviations are derived by
postulating an evolutionary model (Brownian motion) that translates
branch lengths into units of expected evolutionary change. This illustrates
how the choice of a comparative method is a choice of the way evolution
proceeds as well as a choice of a set of statistical procedures. If, for
example, a gradualist model of evolution such as this is assumed, and
evolution has been punctuational (either everywhere or in some branches),
or has proceeded at different rates in different branches, then the
accumulation of variance will not be properly estimated, and the variates
will not be scaled as intended (see Section 5.10, and Martins and Garland
1991).

These comments are not a criticism of Felsenstein’s method. His
procedures provide a way, in principle, of scaling the data according to
whatever evolutionary model is proposed. Indeed, Felsenstein’s proced-
ures even allow for different rates of change in different branches.

5.8.3 Two Felsenstein-like approaches

Methods developed by Grafen (1989) and by Pagel and Harvey (1989b)
follow Felsenstein’s (1985a) idea of finding a set of independent compari-
sons. However, these methods can be applied to imperfectly resolved
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phylogenies, such as might be the case if a taxonomy was used in place of
phylogeny. Here we describe how the methods work on a simple
bifurcating phylogeny. We take up the case of imperfect phylogenies in
Section 5.8.6.

Grafen’s method

Felsenstein’s method assumes that branch lengths are known and uses a
null-model of character change to derive expected variances of the
observations. Grafen (1989) assigns branch lengths according to a counting
rule, and assumes-thatthe expected variance of change along a branch is
proportional to its length (Brownian motion model). Branch lengths are
found by first assigning to each higher node, one fewer than the the
number of species below it in the tree. Thus, species receive a zero, the
next higher node is assigned one fewer than the number of species in it, and
so on. Then, branch lengths are calculated as the difference between
successive nodes. For example, the branch lengths leading to two species
sharing an immediate ancestor would be one. Alternatively, if branch lengths
are known by some independent means they can be specified directly.

The initial branch lengths are then lengthened or compressed in
response to a parameter p that is estimated from the data. A maximum
likelihood procedure is used to estimate p which alters all path lengths in
the tree by a positive power that can vary between 0 and 1. In its extremes
(i.e. where p is close to 0 or to 1), this parameter alters the branch lengths
so that the majority of the variation in the tree is placed either: (1) close to
the species level making species relatively independent (that is, branches
leading to species are lengthened) or (2) close to the root of the tree
making higher nodes more independent. Alternatively, p may lie some-
where in between (a single value of p is estimated, thus this stretching or
compression of the tree is the same for all variables regardless of their
individual distributions of variance throughout the tree). Values of p near
1.0 assign greater variance to higher nodes by stretching the higher
branches; values nearer to zero assign greater variance to lower nodes by
stretching the lower branches.

Once the estimates of the variances of change for different branches are
obtained, Grafen’s procedure finds comparisons among pairs of species or
nodes, for a bifurcating phylogeny, like Felsenstein’s method. The
comparisons are scaled according to their estimated branch lengths, where
branch length is a measure of expected variance. The parameter p is used
to remove any correlation between the magnitude of a standardized
comparison and its estimated variance. Then, on the assumption that the
Brownian motion model provides comparisons that have been properly
scaled, relations among two or more variables can be studied by standard
correlation and regression techniques. Grafen (1989) reports simulation

&y,
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studies in which, for characters generated by a Brownian motion model of
change, his method yields valid Type I error rates and has good statistical
power. Stone and Willmer (1989) used Grafen’s method to examine
whether body size and thermal regime are related to warm-up rates in
bees.

Pagel and Harvey’s method

The method that we have developed finds the same set of comparisons as
Felsenstein’s or Grafen’s methods but differs from those methods in the
way that it scales comparisons for the expected variance.

The method assumes that rates of evolutionary change are likely to vary
in different portions of the tree, and even within branches of the tree, and
thus initially sets all branch lengths equal. For a bifurcating tree all
comparisons are between two species or subtaxa. The method assigns all of
these comparisons (differences) an expected variance proportional to two
times the fixed branch length (variance of a difference between two
independent data points is just the sum of their variances). Although this is
implicitly a punctuational view of evolution, we do not mean necessarily o
advocafe Thar view, Rather, the method explores the possibility that
arbitrarily fixed branch lengths can nevertheless yield acceptable statistical
properties. At a later stage, patterns in the data are used to assess whether
the scaling has in fact produced those properties (see p. 151) This method
of scaling the comparisons has yielded approximately normal distributions
of residual errors about regression lines in two recent studies (Harvey et al.
1990; Trevelyan et al. 1990).

As with the previous two techniques, the set of scaled comparisons can
be analysed by standard regression and correlation techniques on the
assumption that the scaling procedures result in a set of comparisons with
equal expected means and variances under the null hypothesis'?.

5.8.4 Limitations of procedures for scaling comparisons

Many comparative studies of continuous variables combine in the same
analysis, measures as disparate as mass, timing, and counts. It is
reasonable to expect separate rates and distributions of change in these
variables, or different ratés and distributions of change in different regions
of the phylogeny..If we had such information, it could then be applied

13 The method has been used to examine relationships between clutch size and body size in
birds (Blackburn 1990); metabolic rate and life history characteristics in mammals and birds
(Harvey et al. 1990; Trevelyan et al. 1990); the size of the brain, its component parts, and
ecological differences in mammals and birds (Harvey and Krebs 1990; Harvey in press):
bird song, mating system, and life history (Read 1989); geographic range and habitat use in
mamals (Pagel et al. 1991); parasite burden and geographical range in birds (see Harvey
et al. 1991); and recombination rates and age at first reproduction in mammals (Eldred in press).
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flexibly in Felsenstein’s model. The computer application of Grafen’s
method, for example, allows the user to specify branch lengths (in units of
variance of evolutionary change). However, lacking such information, we
should be aware that the comparisons may not have the statistical
properties we desire.

Formally, we should not use parametric statistics to analyse the
comparisons derived from any of the three methods described in the
previous two sections unless we know that the assumptions of those
statistics have been Bmawgw:mm the set of comparisons can reasonably be
regarded as independent, the critical remaining assumption is that they all
have the same variance. The Brownian motion model implicit in the
methods does not guarantee this: equality of variances depends upon
whether the Brownian motion model provides an accurate description of
evolutionary change. In practice, correlation and regression techniques are
-quite robust to violations of their assumptions. However, this should not
be taken as license to use them uncritically. We describe two techniques in
this section that can be used to increase the chances that our statistical tests
are valid: analysis of residuals, and randomization procedures.

Analysis of residuals

The relevant information for an analysis of residuals is the distribution of
residual errors around the regression line formed by the relationship of the
Y comparisons to the X comparisons. The residuals are found as the
difference between the observed value of the Y variable and its predicted
value as determined by the regression line. The frequency distribution of
residual errors should be normal, with approximately 95 per cent of the
points within two standard deviations of the mean. If the comparisons have
not been scaled properly, then some will have larger true variances than
others. This will manifest itself as heterogeneity of the variance of the
residuals about the regression line. ,

We will concentrate on one technique for the detection of heterogeneity
of variance among the residuals. Let s° be the variance and s the standard
deviation of the residual errors about the regression line. It is a property of
regression that the mean of the residual errors is zero. The vector

e
Z,=—
(s7)2 (5.7)

is the vector of residual errors divided by the square root of the variance
(the standard deviation) of residual errors. This transforms the residual
errors to standard scores, that is, scores with a mean of zero and a standard
deviation of one. Many regression procedures automatically calculate
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‘standardized residuals’ according to eqn (5.7). If the residuals have all
come from the same underlying normal distribution, then a histogram of
the elements Z, shouid be normally distributed with approximately 95 per
cent of its observations falling in the interval —2 to +2. This is easil
checked by means of a binomial test: the number of observations outside ovm
Eo IN.S J.rw range should not exceed that expected by chance under the
binomial given that P = 0.05, where P is the probability of being < ~2 or >
+ 2. Other more sophisticated tests can be used to assess the M:m@o of the
distribution.

.ﬁﬁ residuals also should show no tendency to change systematicall
with the predicted value of Y obtained {rom the regression equation ‘;W
correlation of the residuals with the predicted Y is always exactly o@mm_ to
zero. Nevertheless, the spread of residuals might increase (or decrease)
,SE the predicted Y, or the residuals may show a curvelinear pattern
against the predicted Y, and still have a zero correlation overail. Either of
these patterns suggests heterogeneity of variance. .

In the face of significant heterogeneity of variance what can be done?
w&:.ama methods are available on most statistical packages Awwmm.
Z::.SF SAS, GLIM, and BMDP all have methods for treating :oﬁmaou
geneity of <m1msnmv.ﬂ\m@88mwco5\ of variance means that some form of
weighted regression is required, ively, one might attempt trans-
formations of the raw data or 01 the comparisons as a way of removing the
roﬁa.ﬁomo:o:% of variance. And here we come Tull ¢ircle to the methods for
mo.m::m comparisons that have been described previously in conjunction
<.<:r the various methods. This is because weighted regressions, and (non-
r:o.m@ transformations work, in effect, by stretching or omBEome
59.<._acm_ data points as a way of equalizing residual errors. A very lar m
positive residual error may suggest that the data point needs to Uw\mnw_ma
downward, a very large negative residual may suggest the opposite. The
only real difference in doing it at this stage is that the Emwm:a.:m is

OCDQHQOZOQ on @Nﬁﬁ@m ns in QTO Qmwmu Hm::WH :\HN: mn Hmmtc 18! (0] assumec
€ to an
ssum

Randomization tests

In this section we are concerned not with heterogeneity but with the
problem of not knowing what the null hypothesis distribution is.

ﬁ..u Randomization tests provide a way to estimate the null hypothesis

sampling distribution from the data (Bradley 1968; Sokal and Rohlf 1981)
H:o? the result observed in the raw data can be compared against Em
simulated null-model distribution of outcomes to obtain valid statistical
hypothesis tests (examples from comparative biology are given in Pickering

1980; Harvey 1986; Elgar and Harvey 1987; Pagel ;
Blackburn et al. 1990). y 1987: Pagel and Harvey 19850
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The general procedure of a randomization test is repeatedly to shuffle a
data set and calculate some summary statistic each time as a way of
generating a frequency distribution of outcomes under a given null
hypothesis. For example, the null hypothesis distribution for a simple
correlation between pairs of independent comparisons on Y and X might
be simulated by randomly reshuffling the Y comparisons or the X
compatrisons and calculating the correlation. The histogram of correlations
obtained from doing this a large number of times becomes the null-
hypothesis distribution. The actual obtained correlation is checked against
the empirically derived distribution of correlations to see if it is sufficiently
large to consider that it is not a chance result.

Elgar and Harvey (1987) used randomization tests to analyse data on the
relationship between basal metabolic rate and diet. McNab (1986a, b) had
argued that basal metabolic rate in mammals was associated with diet even
after adjusting for body size. Elgar and Harvey’s objection was that diet
categories are not evenly distributed among mammalian taxa, and thus
differences in basal metabolic rate might be associated with differences
among axonomic groups. The relationship between diet and metabolic
rate must be shown to hold independently of taxonomic association. Elgar
and Harvey (1987) employed a randomization procedure that shuffled
metabolic rates (adjusted for body size) and diet categories among
taxonomic groups. This unconfounded taxonomy from the other two
variables. After each of 2000 shufflings, they calculated the relationship
between metabolic rate and diet. They then compared the actual empirical
result with the distribution of results from their randomizations. They were
able to confirm McNab’s claim for only two of the 10 diet categories.

Sessions and Larson’s (1987) study of the relationship of genome size
and limb differentiation rate (Fig. 5.13) can be used to provide a useful
illustration of randomization procedures. We re-analysed their set of 18
comparisons by a randomization procedure designed to capture the null-
hypothesis distribution of two types of correlation coefficient: one is the
regular Pearson correlation (r), and the other is the coefficient of
congruence (r*). The coefficient of congruence is not sensitive to the
direction of change within a comparison (Harman 1967). For example, it
does not distinguish between a pair of contrasts that are both positive
versus a pair that are both negative. This is potentially important because
the sign of a contrast is arbitrary: we have no basis for deciding between
whether to subtract A from B versus B from A, where A and B are two
daughter taxa or species.

Our procedure first randomly re-ordered the set of limb differentiation
comparisons against the set of C-value comparisons, then calculated the
two correlations on the randomized data. This was repeated 2000 times and
the frequency distribution of results obtained. Figure 5.15 displays the
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frequency distributions for the two types of correlation. As would be
expected, the frequency distribution for the Pearson noim_.w:o: is ce »ﬂ g _ﬁ,
roughly symmetrically around zero. The r* distribution, howeve m _,C.
ma.sm:._ma /.\mawwnw and is centred around —0.45. The w:mrx &825? %.f_ _.,
distributions 15 probably due to the distributional quirks of the Hmm M:.m_, :,
oo:%mzmo:? and supports Sessions and Larson’s expressed oo:omam mc, :,
testing the Pearson correlation against the tabled null-distribution val c,, _
Eoém/\m.? the randomizations include these quirks in the data, and E:mcm.f.
mm?.omzmg probability values can be read right off the amm:md::o: j:,
ogm::oa Pearson correlation of _0.65 is significant at the P=0 oowm.ﬁ _:
tailed) level. The ¢ coefficient of —0.66 is also highly woamﬂ an
These results agree with, but are slightly more mx:mw:m %ma o%:.ﬁ.
reported by Sessions and Larson (1987). e
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Fig. 5.15. The data from Fi
_ : g. 5.13 have been randomized so

. . . HT
differentiation rate contrast 18 paired with a random C-value ooEEMM a%ﬂ:
procedure was repeated 2000 times. On each occasion (‘Co rsom's

ro ) unt’) a Pearson’s

WOSMWMM Mwonm_wnwm moicwpm:%ﬂ,?v was calculated (a, above), as was a coefficient of
e (r , above). The coefficient of con i

; e ove). gruence, as described in t

is not sensitive to the direction of change within a ooammam,on hetext

’
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Other procedures for using the data to derive the null distribution exist
nd are slowly receiving more notice. The bootstrap (e.g. Efron and Gong
{83) 18 probably the best known of these re-sampling methods and 18
pased on more rigourous statistical theory than simple randomization
procedures. Lunneborg (1985) and Wu (1986) describe applications of the
bhootstrap to testing the correlation coefficient.

5.8.5 Summary of ms%vm:mm:ﬂ.novalmosm methods

Of the procedures We have described for conducting analyses separately
within groups, three Cumﬂmm:mﬁmw: 1985q; Grafen 1989; Pagel and Harvey
19%9h) extract from the data set @ series of c:ﬁomm:@:ow:%-ammzoa
independent cOmpAarisons which each bear OB the comparative hypothesis.
‘I'he comparative relationship is assessed via the aumber of times it has
.,_amﬁo:ao::u\ evolved rather than by the number of species Of higher
nodes that have come to inherit it. The three procedures will extract the
same set of comparisons from a bifurcating phylogeny, but differ in how
{hose comparisons are scaled. The illustrative example in BOX 5.2 ignores
the problem of scaling.

5.8.6 Comparisons on incompletely resolved phylogenies

The methods described in Sections 5.8.2 and 5.8.3 require that the true
branching phylogeny is known. But, 1t is often the case that we are ignorant
of the true quggé bifurcating phylogeny- Good msﬁommaom based on
molecular techniques are becoming available, but they often resolve the
phylogeny only to the level of subfamilies OF tribes (€8 Sibley and
Ahlquist 1985), and they may even lack resolution at these levels (see
Sarich et al. 1989).

1n many cases We will have either a pooT phylogeny OT even a taxonomy
to represent the branching of species. These incompletely resolved
cwﬁomwiom typically will contain many B::%_m-:oaoma%mn is, nodes from
which more than two daughter taxa are represented as direct descendants.
Wwith more than tWo tips in @ node the logic of finding a simple difference
breaks down. We need methods to cope with multiple nodes if we are 0
apply the logic of comparisons developed above. Our assumption is that
multiple nodes ar¢ monophyletic but do mnot actually represent frue
simultaneous radiations. Rather we assume that multiple nodes conceal some
unknown branching pattern (Grafen 1989; Maddison 1989).

If the multiple node is not & simultaneous radiation then the tips of the
node will not be independent. For example, @ multiple node with three
species may actually conceal the phylogeny of Figure 5.16. Species 2 and 3
share 2 wrﬁomonmnn history that species 1 does not. Not knowing this we
can nevertheless make the assumption that the multiple node conceals at
Jeast one evolved difference: for example, the difference between species 1
and the node from which species 2 and 3 descended. Ignoring branch

e

st
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lengths, this difference can be represented as species 1—{species
species 3)/2. This weighted difference score reduces the information i
three species points to a single point by subtracting the mean of spuct
and 3 from species 1. This represents our assumption that there is @ I
one evolved difference within the multiple node.

Unknown true
branching pattern

1 2 3 1 2 3

Multiple node

Fig. 5.16. A multiple aoa.m concealing an unknown true branching pattern. Taxa
and 3 share phylogenetic history that is not shared by taxon 1.

H:m example just given involves multiplying each species’ value by
weight, and then finding the sum of the weighted values. If the weights an
denoted by ¢;, and the values of the character in each species awsmﬁmg N

then the weighted sum can be written as S¢X;. Weights that have the
property that they always sum to zero are known as contrast coefficienss
Because the coefficients sum 1o zero, the weighted sum can be thought ol
as a weighted difference sCore. This logic can be applied to any ::Bmmﬁ o
mo::m, The difference between two data points is the simplest case of @
linear contrast, where the coefficients are equal to +1 and —1. In this casc

then, the linear contrast is identical to what we would get by findiny
differences throughout a bifurcating phylogeny. Thus, we can think a,_
simple difference scores as a special case of the more general problem ol
finding linear contrasts. )

One way to view the contrasts coefficients is that they represent i
hypothesis about the branching pattern of the unknown vr,\.ﬂﬁvmwi. All ol
the tips that receive a positive weight are implicitly being treated as more
closely related to each other than to the tips that receive a negative weight.
The problem is that there are an infinite number of different ::oﬁ:.
contrasts for any given set of data points. Thus, we need to justity the
methods for finding the contrast coefficients. We will describe the Emmrogf
Grafen (1989) and Pagel and Harvey (1989b) chose. ,

Grafen (1989) chose contrast coefficients for multiple nodes by a
Enomaﬁm that gives greater weight to those species or nodes whose data
points are not well explained by the phylogeny or by the other predictor
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ariables under consideration. Grafen’s procedure in effect first regresses
.} variable on to @ series of dummy codes Tepresenting wrﬁomc:c:n
-mbership, plus any other control yariables chosen by the investigator.
. residuals from the regression of the Y variable will have the property
| they sum to Z€r0 within each taxonomically Of vg._omo:oao&q
iefined group (se€ for example the residuals in Box 5.1 for Stearns
aethod). The residuals are then used as the weights in the tinear contrasts
W the original Y and X variables, and a contrast is found for each
yesumed monophyletic group. Values of Y that are not well explained by
inlogeny and by the X variables used as controls will have larger
.<iduals, and thus be weighted more heavily in the contrast. A
nlogenetic interpretation of this 1s that observations that deviate from
e regression line in the same direction are more closely related to each
_ther than those that deviate in opposite directions.

'he method that we (Pagel and Harvey 1989b: Pagel unpublished
manuscript) use to derive the linear contrasts relies on the assumption that
e X (or V) variable can provide useful information about the hidden
phvlogenetic structure in the multiple node. Multiple nodes are divided nto
ywo sub-nodes according to the distribution of X: those above the mean o1 X
\in the multiple node are assigned to group 1. those below the mean on
\ within the node are assigned to group 5. This criterion assumes that
‘notypically more similar species {oT higher taxa) within a multiple node
are ﬁg;omm:osnm:v\ more closely related. If the X variable does not
provide useful @:ﬁ@mm:ozo information, the comparisons may lack
~tliciency-

All branches within a node are assumed tO be the same length. The
~ontrast coefficients are found as the reciprocal of the number of species oF
proups within each sub-node. Then. the coefficients for group 2 are given a
negative sign. Thus, for example, if the ﬁwoso.&\?o criterion assigned three
.pecies to group 1 and two species to group 2. the contrast coefficients
would be 1/3.1/3. /3. ~1/2. -1/2. This procedure is a slight modification of
hat which was used in an earhier version of the method. Contrast
cocfficients assigned this way always suim to zero. The method gives greater
weight to the subgroup with the fewer number of species. In the case of a
hilurcation, the coefficients will always be 1, -1. The set of coefficients is
applied to X.to Y,and to each of the control variables to find a weighted
i[ference score on each. The value of each weighted sum is standardized
by dividing by the sum of the absolute values of the contrast coefficients.
I'his procedure is repeated for each multiple node. Pagel ?:vcc:m:og
manuscript) describes this proccdure as well as a more general procedure
tor taking into account either known Of estimated branch lengths.

The set of weighted -difference’ SCOTES derived from the separate
independent comparisons can be used to estimate not only whether Y and
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X are related, but to estimate the nature of that relationship as well. As we
shall see in Chapter 6, the slope of the relationship derived from the
analysis of the linear contrasts across taxa will estimate the slope of the
relationship between Y and X, provided that the contrast coefficients arv
found in such a way that they are uncorrelated with the residual variation
in the Y variable. Estimating the slope from independent contrasts avoids
the problems of using non-independent species values (see Sections 5.3 and
6.6.2).

5.8.7 An example of independent-comparisons with unresolved
phylogenies

Earlier in this chapter, for illustrative purposes, we used Millar and
Zammuto’s (1983) data set to examine the relationship between age
maturity and life expectation among mammals. When we employed the
higher nodes method (Section 5.4) there was a significant positive
relationship between the two variables independently of body weight. But
when we used Stearns’ phylogenetic-subtraction method, the relationship
was not significant (Section 5.5). We pointed out that each method discards
the information used by the other, and that independent comparisons
allowed the use of all available information. Is the relationship significant
when independent-comparisons methods are used?

To develop the example, we have continued to use the simple taxonomy
of species, genera, families and orders as in Section 5.5, and have
calculated the linear contrasts and independent comparisons for body
weight, age at maturity, and life expectation at maturity. The 29 species
classified according to the standard mammalian taxonomy used in Sectic
5.5 (Corbet and Hill 1980) allowed the calculation of 17 independent
comparisons for each variable. When size-independent life expectation
comparisons are correlated with size-independent age at maturity compar-
isons, the relationship is highly significant (r = 0.57, n =17, P = 0.02).

However, mammalian taxonomies provide only crude approximations of
phylogenetic relationships.. Using cladistic techniques on morphological
data together with analyses of genetic variation recognised at the molecula
level (see e.g. Benton 1988a, b), it is now possible to produce morc
accurate mammalian phylogenies which can be used with the independent
comparisons methods. Using Millar and Zammuto's (1983) data sct
together with the most recent phylogenetic reconstructions drawn from
many sources, we could distinguish 23 independent contrasts. With body
weight effects controlled for, the correlation between life expectation at
maturity and age at maturity is again highly significant (r = 0.80, n = 23.
P <0.001; Fig. 5.17).

The method can be used to reveal aberrant taxa or, as in this case. thosc
most highly responsible for the relationship. The point at the bottom left of
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tig. 5.17. Independent comparisons calculated from Millar and Zammuto’s
11983) data. Age at maturity and life expectation comparisons are both corrected
1or body size in the figure, being given as a residuals from the regressions of each
hparison on body weight comparisons. The correlation is highly significant (r =
), n = 23, P <0.001). The bottom left point is a comparison between Ochotona
srinceps and Sylvilagus floridanus, and when this outlier is removed the correlation
«emains highly significant (r = 0.66, n = 22, P < 0.001).

Fig. 5.17 seems to be an outlier and represents a comparison between two
fagomorphs, the northern pika Ochotona princeps and the Eastern
vottontail Sylvilagus floridanus. The significance of the correlation does not
Jdepend on that comparison (with the comparison removed r = 0.66, n = 22,
/7<0.001).

5.9 Testing hypotheses with independent comparisons

{Inder most circumstances, testing hypotheses with independent compari-
sons on Y and X proceeds as in Figs 5.17 and 5.18(a). When the
relationship between the Y and X comparisons is positive and all or nearly
all comparisons are positive, a simple linear regression or Pearson
correlation (or non-parametric equivalent) can be used. If the X
comparisons are positive and the Y comparisons are negative, Fig. 5.18(b).
the same procedure can be used.

However, some patterns in the Y and X comparisons require more care
i their interpretation. Specifically, it is necessary to test whether the slope
and the intercept of the regression of the Y comparisons on the X
comparisons differ from zero. Figure 5.18(c) depicts the case where all
comparisons on Y and X are positive, but the magnitude of the Y
comparisons does not change with changes in the magnitude of the X
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(a) . (b)
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Fig. m._.w. Evﬁoﬁm:n& patterns of relationships between sets of independent

MOBUmaHmo:m in which the comparisons on X (A X) are constrained to be positive
omparisons on Y (A 5 can be either positive or negative. and can be positively or

negatively correlated with comparisons on X. ’

comparisons (slope zero, intercept greater than zero). This pattern

nevertheless, is strong evidence against the null hypothesis of :m
relationship between changes in ¥ and X, which would predict an equal
E::co« of negative and positive comparisons on Y. A standard :Mmma
regression on these data would find no relationship. However, either a
regression forced through the origin (Grafen 1989) or a mmz:u_mgnoag
test will detect a significant relationship. If the former is used, however. the
.m_ovo of the line should not be interpreted, only the sign of ,So slope wm of
interest. Figure 5.18(d) shows a relationship that appears significantl

positive, but on reflection reveals that the relationship between Y and Wm\
goes in the positive direction in about half of the taxa and in the negative
a:mocnn in the other half (slope and intercept differ from zero). A
regression through the origin or a binomial test would correctly E&mm:o
Ew‘ﬂ no significant relationship existed. Figure 5.18(e) shows an instance in
which a standard linear regression would find a significant negative
relationship (again, slope and intercept differ from zero). But, as all Y
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comparisons are positive, it would be incorrect to interpret such a slope.
Again, either a regression through the origin or a binomial test would treat
this situation properly.

Many other patterns are possible and can be dealt with by applying the
logic of one of the examples given here, but what realistic examples might
give rise to patterns such as those depicted in Figs 5.18(c)-(e)? Figure 5.19
depicts a possible scenario.

(a)

P N

AY b-a m

Fig. 5.19. The phylogeny in (a) shows four extant species and two ancestral nodes
that can be used to make comparisons. Y and X are related by the curve shown in
(b), with the values for nodal taxa a and b, and the four extant species ¢ to f being
depicted on the figure. Independent comparisons on X and Y (AX and AY) are
shown on (c), and are negatively correlated even though a phylogenetic increase in
Xis associated with an increase in Y for each comparison.
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Figure 5.19(a) shows a phylogenetic tree, Fig. 5.19(b) shows a non-lincar
relationship between Y and X in the raw data for the taxa in that
phylogeny, and Fig. 5.19(c) shows a plot of comparisons similar to that in
Fig. 5.18(e). The points a to f on the X and Y axes in Fig. 5.19(b) indicatc
the hypothetical values for the four species and the two higher nodes.
Values of b—a, d—c, and f—e form the three independent comparisons
from the phylogeny. The relationship between Y and X in Fig. 5.19(b) is
such that the small difference between d and ¢ on the X axis (indicated by
the vertical lines drawn up from those points) translates into a laroc
difference on the Y axis. The large difference between e and f,onthe oEm_,
hand, translates to a small difference in Y, and the difference between b
and a is intermediate on both axes. Note that the three changes in X are
correlated with their average values of X. By appropriate non-linear
transformation of the Y axis, this example can generate either of the
relationships shown in Figs 5.18(a) and (c). Inverting the Y axis allows
other relationships, including that in Fig. 5.18(b), to be generated. In
practice, it is often possible to transform Y and X so that the relationship
between them is linear and the difference between the values for taxa beine
compared is independent of their average value on the X axis (see O:m?mw
6). When such transformations are made, regression intercepts tend not to
differ from zero and difficulties of interpretation are minimized.

5.10 Directional methods

The methods we have described so far do not test the direction of change in
two or more variables along the branches of a phylogeny. Thus, we might
have two species that differ in Y and X in the same direction, but this alone
Qomm. not tell us the direction of change from ancestor to descendant. Both
species could have evolved larger values of X and Y than their immediate
ancestor, they could have both become smaller, or even evolved in
omvomzo directions. We reported a similar distinction in Chapter 4 between
Ridley’s (1983a) and Maddison’s (1990) methods. Huey (1987) points out
that &8305& methods are useful for studying rates of change over
evolutionary time, for assessing the ecological conditions that may have
selected for derived traits, and for analysing whether changes in two traits
are coincident. Chapter 1 discussed further distinctions between direct-
ional and non-directional comparative methods.

Huey m:m Bennett (1986, 1987) report a method for assessing directional
changes in continuous characters along the branches of a phylogeny. They
studied directional and non-directional trends (see Chapter 1) relating
.E&oioa body temperature and optimal temperatures for running speeds
in Australian scincid lizards. Preferred body temperature is defined as that
temperature selected by the animal when exposed to a thermal gradient.
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Huey and Bennett were interested in whether the temperature at which a
lizard species runs fastest has evolved to keep pace with preferred body
temperatures.

To assess the direction and rate of evolutionary change in these two
variables, Huey and Bennett first had to reconstruct the ancestral states of
the lizard phylogeny. They used an iterative procedure (suggested by J.
Felsenstein) that estimated each higher node as the average of its nearest
three neighbours, subject to the provision that the final set of higher nodes
minimized the squared change in the links of the tree, summed across all
links (see Chapter 3). W. Maddison (personal communication) has shown
that, if all branch lengths are assumed to be equal, this procedure also
yields the maximum likelihood set of changes under a Brownian motion
model. The phylogeny that Huey and Bennett used and the reconstructed
ancestral character states for preferred body temperature are shown in Fig.

5.20.

34.7 335 331 31.0 259 29.3 24.1 353

Fig. 5.20. A tentative phylogenetic tree of seven Australian skink genera. At the
top left, the non-Australian Mabuya is used as an outgroup. Australian genera,
listed from left to right are Egernia, Tiliqua, Leiolopisma, Eremiascincus,
Sphenomorphus, Hemiergis, and Ctenotus. Numbers at tips are generic averages
for thermal preferences (°C). Numbers at nodes are presumed ancestral preferen-
ces generated by a minimum evolution method. (After Huey and Bennett 1987).

The directional relationship between optimal running temperature and
preferred body temperature was assessed by calculating the regression of
changes in optimal running temperature against changes in preferred body
temperature. Changes were calculated as the difference between generic
means and the nearest higher node. The authors chose to use genera
because of concerns that species were not independent, although they
acknowledge that the same problem, if not as extreme, may also apply to
genera. Huey and Bennett (1986, 1987) did not adopt a model of
evolutionary change from which they could derive the expected variances



164 - Analysis of continuous variables

of change along the branches. Instead, the changes along the branch-
were treated statistically as if they were drawn from the same null
hypothesis distribution, an explicitly punctuational model of evolution
The regression of changes in optimal running temperature on to changes in
preferred body temperature yielded a slope of 0.25, significantly less th:
1.0, indicating that directional changes in optimal running temperatui.
have lagged behind changes in preferred body temperature (Fig. 5.21).

2.0
15
1.0
0.59 °
0
—0.54
-1.01 °
-15 ®
-2.0
~25
-3.0

Optimal-temperature contrasts

-6 —4 -2 0 2 4
Preferred-temperature contrasts

Fig. 5.21. Optimal running temperature versus preferred body tempera

comparisons in Australian skinks. Change is measured as the difference betwe
each of six generic values and its nearest node. Adaptation is secn to be pa
because the change in optimal running temperature is less than that in pref !
body temperature. The line represents perfect coadaptation where changes
optimal and preferred temperatures are the same. (After Huey and Bennett 1987

Losos (1990) employed Huey and Bennett's procedure to stud
directional changes in locomotory behaviour and morphology in Anolis
lizards (see Section 5.8.2 for a description of this study). Figure 5.22 plots
the directional changes in locomotor behaviour versus directional changc:
in hind limb length, controlling for body size.

Huey and Bennett's procedure differs from the independent-compu
isons methods by examining the changes between ancestors and descen
ants rather than between contemporary species or higher nodes. This
atlows tests of explicitly phylogenetic hypotheses about the direction an!
rates of evolutionary change that are not directly available to non
directional methods. In practice with this method. as the authors not
there will be some dependence among the lower and higher nodes becaus.
the higher nodes are estimated from the lower nodes. For example, in the
extreme case, we might estimate the ancestral state of a genus as (e
arithmetic mean of the species. Because the sum of the deviations of the
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Fig. 5.22. The relationship between the evolution of E:a limb length m:a&mwwm:m
__..cm:o:o% in Anolis lizards using Huey and Bennett's Ccmd 39.:0&.. a m_:m
frequency is walking as a proportion of all moves, and hind limb m<.o_::o: is th
residual of the change in hind limb length relative to the oo_,_.mmvo.:E:m change in
snout-vent length. Each point corresponds to the amount of evolutionary change in
one ancestor-descendant pair. (After Losos 1990).

<pecies about their mean must sum to zero, for a genus with k species only
the first k—1 species in the genus can be independent. If changes along
iranches are computed as deviations from higher nodes, the Eomoiv\ that
ihe deviations sum to zero forces some species to appear to have _:memwa
md others to have decreased with respect to the ancestral oo:a_.:.os.
IHowever, the effects of this non-independence do not appear to be critical
(~ce Section 5.11).

5.10.1 Accumulation of variance over time

Bell (1989) reports a novel use of the :@m:ﬁ analyses of <m1m:o.m to wEQ.%
(he accumulation across taxa of diversity in ormﬂmn@.m over time. H?w
(wchnique is useful for illustrating the rate of m«o_::c:w.J\ diversification
with time, and for identifying time periods of rapid w<o_::osz orm:mo.

As part of a larger study, Bell collected information on body éo_m:ﬁ and
chromosome number in mammals. A nested analysis of variance was
conducted on each character using seven taxonomic levels. Bell also
collected information on the approximate times of divergence o.m the
rixonomic levels, and then plotted the cumulative percentage of variance
41 cach taxonomic level against time of divergence. The results are shown
m g, 5.23. . .

If Bell's analysis is based on correct assumptions, approximately 19 per
cent of the <mmm:om in body mass that was eventually to appear among
contemporary species was already present among super-orders within the
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Fig. 5.23. The increase in variance of body mass (0) and chromosome number
(®) Hr.nocm: time in eutherian mammals. The eight taxonomic levels used for the
analysis to produce seven nested variance components are infra-class superorder
order, suborder, family, subfamily, genus, and species. (After Bell Em,ov. .

infra-class Eutheria during early Tertiary times. Diversity in body mass
among taxonomic groups increased sharply through the radiations of
suborders by which time 78 per cent of the variance seen today was already
present. The rate of diversification in body mass fell off sharply afterwards
Diversification in chromosome number lagged behind that for body mass mw
all stages. This means that the variation among taxonomic groups in
.oraoaomoém number was not as great as that for body mass. One
interpretation is that the variation in chromosome number within groups is
m_émv\m moﬁmirmﬁ large compared to that across groups. Recalling the
interpretation of the cumulative percentage of variance as an intra-class
correlation coefficient (Section 5.4), the chromosome number of one
member of a group will not be a very good a predictor of the chromosome
number of another member of the same group. Bell (1989) suggests that
chromosome number may have been more often associated with speciation
events than was body size.

Figure 5.23 suggests that the amount of divergence among species is
o_omm.:\ related to time since they shared a common ancestor. Bell tested
this idea .3\ plotting the variance of body mass among species within a
genus against the age of the genus for 64 different genera. The plot, which

.mwoéma a highly significant positive relationship (P= 0.002), confirms this
idea.
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5.11 Selected computer simulation results

We finish this chapter by presenting selected results from a series of
computer simulations conducted by Martins and Garland (1991) to
compare the performance of each of several different comparative
methods under different evolutionary scenarios.

Our interest in Martins and Garland’s work is not to use it to argue for
the superiority of one technique over another. Such a conclusion would
depend upon the models of evolution that were used to generate the
simulated data sets being representative of the processes responsible for
the diversity in real data sets. Rather, we use their results to emphasize
that the success of a method depends strongly on whether the data being
analysed were generated by the evolutionary model on which the method is
based.

Martins and Garland analyzed the performance of five different
comparative methods. The methods included a simple cross-species
regression, Felsenstein’s (1985a) method with standardized and unstan-
dardized comparisons (i.e. the latter are not divided by an estimate of their
standard deviation), and the method reported by Huey and Bennett
(1987), again with standardized and with unstandardized changes. The
standardized methods based on Felsenstein’s approach were found
according to two rules. The FL1G procedure standardized according to a
Brownian motion gradual model of evolution in which variance accumul-
ates additively over time. The FL1P, or punctuational, version allowed
only one unit of variance per branch (i.e. all branches the same length).
The non-standardized versions FL2G and FL2P are identical to the FL1
versions excent they are not standardized.

Huey and Bennett’s procedure was also represented by four versions.
ME1G (for minimum evolution) calculates changes between all connected
points on the phylogeny. Higher nodes were calculated as weighted
averages of lower nodes, taking into account branch lengths. MEI1P is the
same as ME1G except all branch lengths are assumed to be equal. ME2G
and ME2P replicate the ME1 versions except changes are calculated only
between nodes and tips of the tree (ME2P corresponds most closely to
what Huey and Bennett actually used). Felsenstein’s, and Huey and
Bennett’s methods were then simulated for both punctuational and gradual
models of change.

In the first of their simulations Martins and Garland studied Type I error
rates, «. from simulations of a ‘known’ phylogeny of 15 species (see lower
portion of Fig. 5.12, after Sessions and Larson 1987) with varying branch
lengths. Data were generated by a Brownian motion process, with no
correlation between Y and X. Branch lengths were measured in units of
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. 1105 (Table 5.5). The minimum evolution methods performed better
punctuational change than with gradual change but again. ME2G
ME2P did somewhat worse than the other minimum evolution models.
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he way evolution
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5.12 Conclusions

ade clear throughout this chapter the inescapable

We hope to have m
a comparative method

connection between the statistical procedures that
cmploys to create a data set suitable for analysis by parametric techniques.

and the evolutionary assumptions necessary to justify those procedures. As

logic dictates, and simulation studies confirm, when a model’s assumptions

are true. the model performs well. When they are not met, the models do

not perform as well. Nevertheless, models must be countenanced in spite

of their weaknesses because, as we stated in the previous chapter.

techniques which ignore them are liable to make implicit assumptions that are
even less realistic than those made by the models. Comparative methods
must either deal with assumptions directly in the form of explicit models
which may be wrong, or acknowledge that they depend upon highly
constrained evolutionary scenarios. Either way, we want to emphasise that
the consequences must be dealt with statistically, and we have described
methods of residual analysis to that end.

A niggling problem with independent-comparisons methods is that we
do not as yet have a way of estimating ancestral characters that is
independent of the distribution of extant characters. This can introduce
some dependence among the members of a set of comparisons. Felsenstein
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(19854, p. 13), relaying an idea suggested by a student, suggested that '«
could use comparisons between pairs of species that we were fairly
had a common ancestor not shared with any member of another pair, o
that these contrasts could then be safely assumed to be independent’. i
(1989) later reported the same technique, but without the evolutionu:-
considerations with which Felsenstein imbued his model. This dependcns
does not seem to be a serious problem, however. If it were, we should
expect independent-comparisons methods to have performed so well &
Martins and Garland’s (1991) simulations.

On logical grounds, independent-comparisons methods and method
that use explicit ancestral character reconstruction to test the direction vt
evolutionary trends should be preferred over their cross-species rivals. 'L
best developed cross-species methods unnecessarily discard large amount
of information that independent-comparisons and ancestral reconstructios
(i.e. directional) methods approaches exploit. There is no good reason
discard as inappropriate for testing adaptive trends, the variance that i:
correlated with phylogenetic differences. We simply must know how 1«

treat this variance, and independent-comparisons methods provide ti
way.

5.12 Summary

The branching structure of phylogenies ensures that species are not
independent for statistical purposes. Various comparative methods diffe
in how they estimate and manage this non-independence. Some methods
discard information in an attempt to create a set of independent points.
while others which make use of all the variation in the phylogeny are to be
preferred on logical grounds. These methods employ independent compar-
isons either to assess differences among species or higher nodes, or to
assess the direction of evolutionary change. Evolutionary models implicitly
or explicitly underpin all methods. The validity of a method depends upon
whether the model on which it is based accurately describes the
evolutionary processes that have generated diversity.
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