Comparative analysis of discrete data
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{‘omparafive questions involving discrete variables are widespread in
bology. Recent studies range over issues from breeding system and mode
ol dispersal in plants: group living, coloration, and palatability in insects;
« sl selection and breeding systems in birds; and sexual competition and
sovia) organization in primates (e.g. Givnish 1980; Harvey and Paxton
tust: Ridley 1983a, 1986b; Sillén-Tullberg 1988; Donoghue 1989; Hoglund
{989 Maddison 1990). In Chapter 2 we considered the various biological
seasons for closely related species having similar phenotypes. Whenever
~ueh similarity s inherited by descent from a common ancestor, we are not
justified in treating species as independent points for statistical analysis.
Instead, we must identify separate or independent evolutionary origins of
the character states of interest. Because this chapter deals with statistical
mnethods for analysing discrete character data obtained from a hierarchi-
cally nested phylogeny, we start by presenting a statistical complement to
the material contained in Chapter 2. How do the biological processes
deseribed in Chapter 2 translate into phylogenetic similarity among
discrete character states? And how might this similarity be dealt with?
Many of these same themes will recur in Chapter 5 in conjunction with
methods of analysis for continuous variables.

We then describe the kinds of transitions between character states that
will be observed between two dichotomous discrete variables, and show
how two methods designed to analyse discrete data from phylogenies, one
developed by Ridley (19834) and the other by Maddison (1990), treat these
transitions. This is followed by examples of the application of both
methods. Finally, we describe a general statistical method for treating
comparative dichotomous data (a method developed by Pagel from one
given by Pagel and Harvey 1989b). Here the paraliels with models in island
biogeography become apparent. This method makes it possible to use
Ridley's and Maddison’s methods while taking into account times of
phylogenetic divergence.

4.2 The problem

4.2.1 Non-independence of data points

Suppose that we have collected together data on whether the larvae of each
of many species of butterfly are warningly coloured or cryptic, and whether
they are solitary or gregarious. We might ask whether there is evidence
that warning coloration and gregariousness are related. Two dichotomous
variables can give rise to four possible combinations of character states. It
is tempting merely to tally the number of species that are in each of the
four possible combinations of the characters and perform a statistical test
of association, such as the chi-square. But most statistical tests assume that
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the individual data points are inde
test for association would be no ex
us correct probability values,

structure underlying the evolut
independent, Felsenstein (1985a
ous variables, which we shall use
for discrete variables (Fig. 4.1).

) m_.«om” just such an example for continu-
again in Chapter 5 and have adopted here
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18- 4.1.  Simultaneous radiation of eight species from a single common ancestor

. The eight species in Fig. 4.1 are all assumed to have radiated at the same
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We should be reluctant to treat species from this phylogeny as
ssehependent. Species S3 and S4, for example, share all of their evolution-
istory except for the relatively small amount of independent evolution
«ice they split from their common ancestor: the evolutionary changes
trading to their contemporary character states have not been independent.
Thus, to count both of them in a statistical test would overestimate the
sumber of times that their particular combination of characters has
svolved.

i'he usual symptom of non-independence is that closely related species
send to be more alike than more distantly related species. This point, of
wilarity associated with recent shared ancestry, is grasped intuitively, but
what evolutionary models are implicit in it?

4.2.2 Two views of how non-independence arises

One view sees similarity associated with phylogeny arising essentially out

aconstraint onhow fast species can evolve (similar to ‘phylogenetic time
lags” in Chapter 2). For each of the branches in Fig. 4.2 we can write a
variable #; indicating the length (in units of time or numbers of
generations) of the branch connecting node i with node j. If we know the
probability of a character changing state per unit of time and we assume
that rates.of change do not vary, then it is fairly easy to see that unless the
probability is high or the branch length is very long, species with very
recent common ancestors are more likely to have similar character states’
than more_distantly related species. Thus, for example, consider that the
branches leading from nodes n4, n5, n6, and n7 to their respective species
are each of length 1.0 instead of the lengths shown on Fig. 4.2. Further,
assume that the probability of a particular character changing state per unit :
time is less than 0.5. Then, more often than not, the species-pairs in the
terminal branches will have the same character state, but not because they
have each independently evolved it. -

There is no doubt an upper bound to the rate of evolution, but whether it
is important for the characters typically studied in comparative analyses is

,_@m\wm,ﬁaﬂwm&mmmﬁmoaa it probably is, others not. For example,

the odds against a marsupial mammal evolving, in a single speciation, into
a placental mammal are astronomical. Examples such as this may suffer
from adopting the wrong level of analysis. That is, there are very likely
intermediate degrees of placentation that can vary among species in, for
example, the same genus. But the deeper problem with the ‘not enough
time’ point of view is that it suggests that the only reasen for-phylogenetic

similarity-is-that species-have not spent enough time apart to become very

different. This, surely, is not the whole story.

%rwmmﬁmozg@owiomsmw?mugE@ozmmaﬁ:nxw:ﬂromamwgmoimﬁ
explanations that we termed ‘phylogenetic niche conservatism’ and
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chongas nl and n2 of Fig. 4.2, one variable changed from state 0 to state 1 but the
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‘different adaptive responses’ in Chapter 2, is that phylogenetic similarity
Ie imitari ctive forces and a similarity of response to sin
forces. On this view, two species in the same genus are similar because they

~trave shared histories of selective forces up to the point of their splitting.
and because they are very likely to share many features in their current
environments. The latter point is virtually guaranteed i that
similar species tend to be adapted to similar environments. It does nol
require any special models of speciation. -

I

4.2.3 Implications of non-independence for statistical tests

Either viewpoint on phylogenetic similarity has important implications for
testing comparative :%@oﬂromom\wvmnmmm may not _be_independent with

® respect to some character because they rwﬁw@u even in spite of selection
to diverge, had enough time i on-independence will

@ also arise due to shared selective forces and similar phenotypic responses

to those forcesfCorrelating the character states of two variables across

species, then, could include many data points that were not independent.

// As a consequence, the degrees of freedom for the statistical test will be

= overestimated and we cannot trust the probability values associated with
the statistic.

We could, alternatively, restrict ourselves to higher nodes of the tree on

the grounds that they are more likely to be m:amum%w%i: be

species can also be applied to differences among the higher nodes. The use
of higher nodes rests implicitty on the assumptions of long enough
branches or high enough rates of evolutionary change (or both), or such
very different selective forces among the lineages that the higher nodes can
be considered independent with respect to the characters under considera-
tion.

4.3 Character transitions and discrete variables

If we often cannot consider species or even higher nodes as independent,
then how can we use the information in the phylogeny to test for
covariation between the two characters? One answer was hinted at in Fig.
4.1. The subtaxa within a monophyletic group share their evolutionary
history up to the point of their origins. But, as a first approximation, the
evolutionary change along an individual branch is independent of the

o:w:mom:ogmagm:orom.Hr:mvpboEmm8822rm%;mm\.@<»ov,&m9m8
variabl . iofR—is-si

ly to correlate the
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other did not, which would count against the idea of correlated change
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reconstr COHWQ Murwﬁcmﬂ:w u@@w@mﬂmwﬁm our U@wﬁ estimate Om :JO true HUTV\ O~

geny. To assign character states to higher nodes, Ridley suggests usi .1 example, branches with characters X and Y both in end-state 0 can arise
’ sing

o outgroup analysis. However, as descri i wm three types of transition (X chan ine from state 1, Y changing from
%04 Maddison et al. (1984) a ; escribed in O:m?wﬂwv rules suggested by N ,‘. P ( . gng T ging
¢ a e 7 ) and by Swofford and Maddison (1987) ) .ate 1. or both characters changing from state 1). Ridley’s method treats
m@wwom:mﬁm if parsimony is the criterion to be used for r. are more i three different combinations as equivalent. In Table 4.3 we show, by
ncestral character states. econstructing teterence to Table 4.1, which transitions are classified together by Ridley’s
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table 4.3 The way in which transitions from Table 4.1 contribute to Ridley’s
wod of analysis. Types 6, 8, 14, and 16 are not included because they describe
ches along which no transitions OCcur.

occurs are not included. B i i

ot counting smocie :.v\ not including such branches, the method b i~
avoids counting . %Bo or higher nodes which share character states with T T ea 2
. n ancestor, and whi i

oo which thereby cannot be considered b N ,,_v ,\N, Wo,m w, M W

T N
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i-square (or stytes, defi at the end of a branch, tend to be

Fisher’s Exact Test) i i

; is evidence that the transiti ‘
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independent; some combinations of characters are m have not been i correlated. This interpretation suggests an imaginary "phylo §consisting

W.mz omvooﬁoa by chance. Table 4.2 shows the oocimwﬂmmoa _Mmcmv common S of many parallel branches. The beginning states of the branches are
idley’s method to the data in Fig. 4.2, ined by applying unimportant provided that one or the other of the characters has changed

along the branch. If changes in the two characters are random, then there

<hould not be an association among the end-states. Correlated evolution-

Table 4.2 Analysis of evolutionary events using Ridley’ ary change, however, will produce a correlation among the end-states. The

data from Fig. 4.2. A tally of end-states in chmm :a_m« s method applied to the ; method does not utilize the direction of evolutionary change, or which

produces the 2 X 2 contingency table, for which x:NM%.wwawM_mmw:Mmmmmvﬁ Wo or'Y variable changed first. These will be key differences between Ridley’s and
o v Maddison’s approaches (Section 4.5).

4.4.1 Applying Ridley’s method: lekking and dimorphism

-0 . - An example of the use of Ridley’s method comes from Hoglund’s study of
1 T lekking and sexual dimorphism in size and plumage among birds. Hoglund
{1989) found a significant association between lekking and both size and
plumage dimorphism across 114 bird species: lekking was associated with a
higher proportion of the species showing size dimorphism and colour
dimorphism (Table 4.4).

However, Hoglund questioned these results on the grounds that all three
variables show strong phylogenetic associations. To determine whether a
relationship between lekking and dimorphism has actually arisen through
the correlated evolution of the two characters, Hoglund constructed
’ phylogenies for his species, determined likely ancestral character states,

The logic of Ridley’
y’s method can be und i
. : erstood in te
W:w_\womo.:m:.o tree branch types shown in Table 4.1. Four of zmzwmmmm e
:n&mm in either m:mwmoﬁmav are ignored by Ridley, whereas the oﬁrvﬁww e
together in four groups of three depending on the end mSHMmH 1;3@
- . Thus
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larger females lay more eggs; (2) larger males have an advantage in
competition for mates; and (3) the duration of mating is long.

4.5 Tests of directional hypotheses with discrete
characters

Ridley’s-method is designed to detect the pattern but not necessarily the
direction of evolutionary change throughout a phylogeny. In thisSection
we describe a test developed by Maddison (1990) for that purpose.
Maddison’ is desi to detect whether changes i character
_are concentrated in certain regions of a phylogenetic tree. This might arise

“if the state of one character somehow makes the evolution of another more

likely. Thus, Maddison’s te ats one of t bles as.the
independent or ‘causal’ variab e dependent variable. It

e

then searches for evidence that the likelihood of the dependent variable
changing is higher in the presence of one category of the independent
variable than in the presence of the other.

An example of an explicitly directional hypothesis of the sort for which
Maddison designed his test is given by Sillén-Tullberg’s (1988) work on the
evolution of gregariousness in butterflies with warningly coloured larvae.
Sillén-Tullberg found that gregariousness had evolved 23 times in the
butterflies, and in 15 to 18 of these cases, the larvae were warningly
coloured. Sillén-Tullberg concluded that this many gains of gregariousness
in the presence of warning coloration suggest that warning coloration
predisposes butterflies to evolve gregariousness.

Maddison’s (1990) criticism of Sillén-Tullberg’s approach, however, is
that it fails to take into account the distribution of warning coloration in the
phylogeny. Maddison points out that if, for example, warning coloration is
very common in the butterflies then we would expect gregariousness to
evolve in its presence more often than not, just by chance. This is easy to

\_see in an extreme case: if all butterflies are warningly coloured then any

evolutionary change toward gregariousness will be in the presence of
warning coloration. Maddison’s test, then, attempts to take into account
the phylogenetic distribution of the traits, in addition to the number and
pattern of transitions, in deciding whether a particular pattern is evidence
for correlated evolution.

To see how Maddison takes into account the phylogenetic distribution of
traits, consider the simple phylogeny in Fig. 4.4.

Two characters are coded on the tree. One, the independent variable
can take the states W and B. The other takes the values 0 and 1. We take
the ancestral condition for this tree to be W0, and thus the tree shows two
instances of the evolution of B and two instances of the evolution of 1. To
keep this example simple, we assume perfect knowledge of the phylogeny,
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Qay

fig. 44. A hypothetical phylogenetic tree. w&:&.mw marked in UOE M@mmw.aww
fineages in which a character is in state B, 2::.9:3 gu:.ormm in sta a
{siamonds crossing the bold branches refer to evolutionary transitions of a secon
“haracter from ancestral state 0 to derived state 1.

and that the 1s have evolved in both cases after the Bs. How should we test
whether the 1s are more likely to evolve in the presence of B than in the
syresence of W?

m qu\m:im:ﬁ 1o test the likelihood of having two gains of 1 in the presence om
Ji, given the distribution of Wand B throughout the tree. To see <.<3: _w is
J,m.ﬁozm:n to take into account the distribution of W and B. Oo:wao.H that

there is only one way in Fig. 4.4 that both 1s could have w<o~<oa in the

presence of B, but many ways that they could have evolved if Wand B are

\nored. This is the essence of Maddison’s test: We must ,E
sumber of different ways that there ar 0.gains-of-1in the B

‘wranches of the tree given that there are two gains total (or more mmsoﬂmzw.

the number of different ways that there are t0 =ve % or more gains of 1in

the B branches of the tree given that there are y gains of 1 and z losses of 1

over the whole tree: x < y); and @v%g%%ﬁ

0
have two gainsof 1 on the tree without regard to whether they occur in W

or B branches (or more generally, the :chw_, of differen ere

“‘l‘“‘"‘l
wi A8

are to have y gains and z losses on -2 .
.wh%mcw in the i . The probability of the particula
result under the null hypothesis is a/b. The denominator, then, records the

number of ways that the pattern of gains or losses .5 the ammw:&mﬁ
variable could have occurred on the tree. The numerator 1s a mcgﬂ. of this
number. It records the number of ways that a pattern of transitions as
extreme or more extreme than that observed could have OOocQ.oa in
pranches of the tree in which the independent variable takes one particular
e (e.g. B). . . .
wnmp%aammosv,w test can be illustrated for the tree in Fig. »a It :,m
straightforward to enumerate all possible outcomes corresponding to the
quantities a and b. There turn out to be nine different ways that character
state 1 can evolve twice on the tree (Box 4.1). Only one of EoMa
corresponds to evolving both 1s along the B branches of Ew tree. ﬂéw Mrw
test yields a probability of 1/9 by chance alone that both instances of the
evolution of ‘1’ would occur in the B branches of the tree.
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Box 4.1. The nine possible ways that 1 can evolve twice on the
phylogenetic tree in Fig. 4.4 (top tree here)

AR

ébv,\
/&W\
The nine redistributions of character states exhaust the possible ways of evolving
the character 1 twice on the tree. Only one of them corresponds to the character
evolving both times in the bold branches of the tree. - Thus Maddison's test would

assign a probability' 1/9 to the likelihood that both 0—51 transitions occurred on
bold branches by chance -alone.

It might be thought that a much simpler test of this hypothesis would be
to compare the proportion of B branches in which 1 has evolved with the
proportion of W branches in which 1 has evolved. Maddison (1990)
correctly points out that such a test ignores the fact that the topology of
trees affects the number of ways that events can occur. This is most easily
seen with an example. Box 4.2 shows a tree that, like the tree in Fig. 4.4
has two instances of the evolution of 1 in the presence of B, no losses of 1,
and four W and two B branches. However, there are 11 possible ways that
two instances of 1 could have evolved on the tree in Box 4.2 compared to
the nine for the tree in Fig. 4.4 (Box 4.1). Thus, identical patterns of 1s
evolving on the B branches of these two trees nevertheless have different
probabilities of occurring by chance.

s
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Box 4.2. How tree topology can influence the likelihood of
correlated evolutionary events

S :
i

it

The top centre phylogenetic tree has several similarities with the tree shown in Fig.
4.4: it has the same number of branches in states B (bold) and W, the same number of
character state transitions from 0 to 1, and both transitions occur on the B branches.

However, the 11 ways that the character transition 0—1 can occur (as enumerated by

the trees drawn next to. and below the top centre tree) contrast ‘with the nine
arrangements for the tree shown in Fig. 4.4 (see Box 4.1).

For simple trees, Maddison gives an algorithm for computing the two
values required for his test. However, this algorithm quickly becomes
impractical to use for complex trees and so Maddison has developed a
simulation technique for such cases. Maddison re-analysed Sillén-
Tullberg’s data set with this method and found that 15 to 18 gains of
gregariousness in the presence of warning coloration could easily have
occurred by chance, given that warning coloration is so widespread in the
butterflies (Table 4.6 and Fig. 4.5).

4.5.1 Transitions among character states

Maddison’s method uses the 16 transitions in Table 4.1 differently from
Ridley’s method. Returning to the example of Hoglund’s (1989) study of




92 - Analysis of discrete data

Table 4.6 Data from Silién-Tullberg’s (1988) study of warning coloration
(aposematism) and gregariousness in butterflies. Each record is of an evolutionary
event. There are 15 to 18 instances of the evolution of gregariousness following the
evolution of warning coloration. Using Sillén-Tullberg’s estimates (see text):
probability of 15 or more out of 20 (two-tailed test) = 0.04, probability of 15 or
more out of 23 = 0.21, and probability of 18 or more out of 23 = 0.01. Families
included are the Papilionidae, Pieridae, and the Nymphalidae. Re-analysis by
Maddison’s (1990) method, based on 23 gains and six losses of gregariousness and
taking into account the phylogenetic distribution of warning coloration, gives P>
0.05 for both 15 or more and 18 or more gains in the warningly coloured branches.
(See Fig. 4.5).

State of larvae Solitary Gregarious

Evolution of 9 0
aposematism

State of larvae Aposematic Cryptic
Evolution of 15 5
gregariousness

Evolution of aposematism
and gregariousness 3
inseparable

lekking and sexual dimorphism, we showed how Ridley’s method counted
any transition in the phylogeny that resulted in either lekking and
dimorphism or non-lekking and monomorphism as evidence for the
relationship. But, for example, there are three ways that an end-state of
lekking and dimorphism can arise: (1) a monomorphic lekking taxon may
become dimorphic; (2) a dimorphic non-lekking taxon may evolve lekking;
or (3) a monomorphic non-lekking taxon may show a double transition to
dimorphism and lekking. Transitions with qualitatively different causalities
are treated equivalently.
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10 11 12 13 14 15 16 17 18 19 20 21 22 23
No. of changes to gregariousness on branches
with warning coloration

Fig. 4.5. Frequency distribution of the expected number of changes to gregarious-
ness in the warningly coloured branches of Sillén-Tullberg’s (1988) phylogenetic
tree of butterfly caterpillars, assuming the observed case of 23 gains and six losses in
the tree as a whole. The distribution is based on 10 411 computer simulations. More
than 20 gains would be judged significant; Sillén-Tullberg observed 15 to 18 gains.
(After Maddison 1990).

number of transitions to dimorphism in the lekking branches of the tree
plus any other gain of dimorphism (not to mention losses) could have
evolved on the tree. The more times that dimorphism has evolved in non-
lekking branches, the greater the quantity a in Maddison’s test will be,
other things equal (e.g. compare the number of different combinations of
five things taken five at a time versus five things taken three at a time).
Because this number is the numerator of Maddison’s test, it will increase the
overall probability. The third outcome might be ignored since the order of
the changes in a double transition is ambiguous. Alternatively, branches in
which both characters change together could be assigned to first one then
the other directional category to determine what effect, if any, their

inclusion has on the results.

DAL, Los | Maddison, on the other hand, would use each of these transitions
e Maddison’s method, then, explicitly tests whether the probability of the

s | differently. The first would be used as evidence for the directional
Fideloli s 00

| hypothesis that the evolution of lekking precedes the evolution of
dimorphism. The second outcome would be taken as evidence against the
hypothesis. To see why, recall that Maddison’s test involves counting the
number of different ways that, in the present example, the observed

dependent variable (Y) changing from, say, 0 to 1 depends upon the state
of the independent variable (X). This is equivalent to testing whether the
probability associated with the cell numbered 5 in Table 4.1 differs from
that of cell 13, taking into account back transitions and lack of change.
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4.5.2 Maddison’s method applied: the evolution of dioecy

Donoghue (1989) used Maddison’s method to investigate the evolution of
dioecy in flowering plants. Dioecious plants have separate male and female
flowers, with only one sex per plant. Monoecious species have bisexual
flowers. Givnish (1980) showed a strong correlation across species between
dioecy and fleshy propagules that are dispersed by animals, and monoecy
and propagules dispersed by wind: 339 of 384 monoecious species had
wind-dispersed propagules, while 402 of 420 dioecious species had fleshy
propagules (xi =570, P <0.00001). Givnish argued on the basis of this
highly significant association that dioecy would be favoured in plants with
fleshy propagules.

Donoghue (1989), however, was concerned that strong phylogenetic
associations in these traits had led to gross inflation of the strength of the
association that Givnish found. Further, Donoghue was interested in
Givnish’s explicitly directional suggestion that dioecy evolves after the
evolution of fleshy propagules, and so used Maddison’s approach. The
cladogram in Fig. 4.6 shows the evolution of dioecy/monoecy and fleshy/
non-fleshy propagules in the Gymnosperms. Ancestral states were con-
structed according to parsimony rules (Swofford and Maddison 1987). The
mode of dispersal was uncertain in some taxa and so Donoghue tested his
ideas in two ways using the cladogram in Fig. 4.6: one in which all
equivocal taxa were taken to be animal dispersed and one in which they
were treated as wind dispersed. Further, some branches showed simul-
taneous change in both characters. The results did not depend on which
way the equivocal taxa were counted and so we confine our remarks only to
the effect of the branches in which both characters changed.

When the branches with changes in both characters were treated as
evidence for the relationship, Maddison’s test gave a significant result:
there were five or more gains of dioecy in branches with fleshy propagules,
out of seven gains and two losses overall (Fig. 4.6, Table 4.7, P= 0.02).
However, when the equivocal branches were not counted in favour of the
hypothesis, the result became non-significant (P =0.13). Donoghue
cautioned that the uncertainties about phylogenies mean that his results
cannot be taken as an unambiguous test of Givnish’s idea, but rather as a
beginning that will encourage further phylogenetic study. Leaving aside
such difficulties, this example and Hoglund’s (1989) lekking example
demonstrate how badly we can be misled when species are treated as
independent data points.

4.6 A statistical model of evolutionary change

Ridley’s and Maddison’s methods both account for non-independence of
species and provide ways of counting only independent instances of
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Conifers .

Seed plants

Fig. 4.6. A cladogram of seed plants showing parsimonious reconstructions of the
evolution of fleshy propagules (animal dispersal) and dioecy. The phylogeny of
angiosperms (A) is omitted from this figure. Branches in bold indicate fleshy
propagules, non-bold branches dry propagules, and dashed branches are equivocal.
Taxa known to be dioecious are marked by asterisks. Bold crossbars indicate the
origins of dioecy and non-bold crossbars reversal to monoecy. (After Donoghue
1989).

evolutionary changes throughout a phylogeny. However, missing from
both approaches is any way of taking into account the differing amounts-ef

_evolutionary change that might be expected to take place in branches of

different lengths. This is an important point, because, for example, we may
expect by chance that a variable will be more likely to change in a longer
branch of a tree than in a shorter branch. Correlated change in a longer
branch may be more likely by the same reasoning. We need a way of
correcting for these differences. This section describes a method sketched
out by Pagel and Harvey (1989b) and formally developed by Pagel
(unpublished manuscript) for the evolution of discrete characters that
takes into account both evolutionary branch lengths and the probability of
character transitions. Ridley’'s and Maddison's methods can be derived
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.ome constant rate, r, when measured over long enough time periods.
{'resumably all of the forces required to cause a base change are present in
e base or its environment, but nevertheless the base does not change
cvery Lr units of time, rather there will be a distribution of events (most
iikely Poisson), with a mean of 1/r. This distribution says something about
the probability of all the forces required for a base change coming
together, and the variance of that process. Similarly, for more complex
haracters we assume that each has the potential to change, but when on
sverage it actually does change depends upon the likelihood of all of the

Table 4.7 Counts of the evolution of dioecy in gymno i i

Eovmméam versus wind-dispersed Eonmmﬂ_am um\amg mv%wﬂ :Wm%%ﬂw:,“m: w%ﬁﬂ_v;
Analysis of this data set using Maddison’s method which, despite the mwé: :Edﬁ V
o.w changes, by taking into account the number of branches with fleshy and wi #__
a_wwmama. propagules, yields P=0.02 if equivocal data are counted 5, m?wﬁ %,:__T.
hypothesis, but P=0.13 when equivocal data are not counted. o

Independent variable

Www%%ﬁmma Fleshy Wind-dispersed Equivocal furces for change occurring together or perhaps in the right sequence.
propagules propagules propagules s ‘'ransition probabilities, then, enca sulate our knowledge of all the forces

Gains of dioecy P . uclingon a variable in a particularbranch... . .
Losses of dioecy 5 w 1 - More formally, assume that we have a a,ovoﬁoaocw./.\m:mgo, X, which
0 can take the values 0 and 1. Define adr as the probability that X changes

irom state 0 to state 1 over some small unit of time dt:

Poi(dr) = adt. (4.1)

WOB.HEm model 9\ .Emw:_m special assumptions about branch lengths and
transition probabilities (see Section 4.9). Similarly, we can define Bdr as the probability of X changing from 1 to 0

4.6.1 Evolutionary change in discrete characters over a small unit of time d

Oonm.a.mn again the hypothetical phylogeny in Fig. 4.2. We shall assume = 4.2

that it is the true phylogeny, and that we know the branch lengths and the Puldy=pet -
character states at higher nodes. Each character can take one of two states
0 or H .> branch beginning in 0 may change to 1 in a given branch oH,
remain in state 0. The same is true for branches beginning in state 1 Zwi
given a null hypothesis of evolutionary change which treats E.o Qﬁw
characters under consideration as undergoing independent evolution, we
can derive the expected values of the characters and of the <m1m:oo,w of
character changes in each branch of the phylogeny. The observed states
can then be transformed to take into account these expectations. Then, we
can correlate the transformed variables to test for covariation in the ,:zo
characters.

L seu=p - We assume that the evolution of a dichotomous character can be

J.sns  modelled by a process that allows the character to change from one state to

the oEQ with specified probability per unit of time. The probability of a
nrmsmo.a assumed to be the same in all branches of the phylogeny. For
wmogg:.awm greater than zero, the model assumes that, over long w:.o:ms
time wo:.oamq the character is very likely to change state. Over very short
time vozo.ar the character can change but it is less likely to do so. An o
m:m_omvw @E base substitutions can be used to illustrate what we mean by a Por ()= (- exp (e +B)D
probability of a character change. Assume that a base changes state at atp

Note that « and B do not have to add to 1.0. For simplicity in the present
discussion, we assume that  and B are constants. That is, the probability
of a transition does not change in different branches of the tree. However,
to make the equations more general one could simply attach subscripts /
and j to any transition probability to indicate the two flodes that define the
branch in the tree it described. Similar transition probabilities between
character states could be defined for a second character Y, and for any
number of other variables (the equations describing a second and
additional variables will be identical to those for « and B).

The probability of a character X ending in state 1 in a branch of arbitrary
length ¢ that began in state 0 can be modelled by a process that allows Xto
change forward and backward an indefinite number of times. The
probability is a function of the relative values of o and § and the length of
the branch:

(4.3)
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Similarly, if the character begins in state 1, then the probability that after
time 7 it is in state O is given by:

P =—"_ (1- exp[~(a + B)1]).
a+p (4.4)

Diamond and May (1977, note 7) reported eqns (4.3) and (4.4) in their
study of species’ turnover rates on islands as-a function of immigration and
local extinction rates. By the usual methods, we can derive expected values
for the mean and variance of the characters. The expected value can be
thought of as follows. If evolution was randomly re-run many times, some
of the times a branch beginning in state 0 will end in state 1, the remainder
of the times it would end in state 0. The average of these many ‘trials’ is the
expected value. The variance is just the variance of these outcomes. The
expected character state over an arbitrary amount of time ¢ is given by”:

(83
E[Xo (0]= ———(Q-exp[—(a+ B)]) =pa-
atB (4.5)
The expected variance of the character after time 7 is given by:
E[VAR(Xo1)] = por(1 = ro)- (4.6)

Similar expressions can be derived for the probability of a transition
from 1 to 0. Thus, the expected character state after time s for a branch
beginning in state 1 is:

E[Xun()] = 1+ (1— exp [~(a + B)(]) = pao
a+p (4.7)

The expected variance is given by:
E[VAR(X10)] = m1o(1 = p10)- (4.8)
The expected values in eqns (4.5) to (4.8) can be used to transform all

observations in the phylogeny to have the same mean and variance. Thus,
for any given end-state (0 or 1) along a branch that began in 0, a standard

 Equations (4.5) to (4.8), depend upon the arbitrary assignment of 0 and 1 to the two
character states. For different values, the equations will change appropriately and the same
ultimate answers will be obtained.
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score can be formed by subtracting its mean (eqn 4.5) and dividing by the
square root of its variance (eqn 4.6). Similarly, subtracting eqn (4.7) and
dividing by the square root of eqn (4.8) will convert to a standard score an
end-state that began in state 1. Doing this for each branch will scale all
observations to a mean of zero and a standard deviation of one. The size of
the standard score (either positive or negative) gives an indication of the
degree of change relative to what would have been expected by chance. All
the equations for transforming X and a second character, Y, to standard
scores are shown in Box 4.3, along with an example transformation.

The formulae in eqns (4.5) to (4.8) yield positive standardized scores for
transitions either from 1 to 0 or from 0 to 1, and negative standardized
scores for a lack of change, be it either a branch beginning and ending in 0

Box . 4.3. Equations for finding the mean and variance of change
along a branch of a phylogenetic tree, and the
computation of standard scores

1. Transition: probabilities
Py (dt)= ot
Proldr) = pdt

1I.- Expected character state after time ¢
o
(1 - expl - (e + B)])
o+ B
B

o+ B

Hor =

Hip=1- (1 - expl - (& + B)t])

-1II. ‘Expected variance after time ¢

qﬁm = Hoi(l - Hop)
G160 = Kio(l - Hio)

IV. Computation of a standard score

Assume that character X has changed from 0 to 1 over a branch of length 50
and that o = 0.01 and B = 0.01
0.01
HX=0.01 + 0.01
of = 032(1-032) = 0.22
1-0.32

Vo2

(1 - expl - (0.01 + 0.01)30]) = 0.32

standardized score =



i

bvmc«?x

q

zf N3

100 - Analysis of discrete data

or beginning and ending in 1. By convention, however, we assign
(arbitrarily) a positive sign to any branch ending in 1 and a negative sign to
any branch ending in 0. This convention says, in effect, that a transition
from 0 to 1 or a branch remaining in 1 are the same kind of evidence. For
example, Y and X both changing from 0 to 1, or Y and X both remaining in
state 1, are evidence that Y and X evolve together.

The set of scaled observations on X and Y obtained by applying eqns
(4.5) to (4.8) to each of the branches of a phylogeny can be tested using a
Pearson correlation coefficient, under the assumption that change or lack

#*of change in each branch is an independent event, and that the underlying

distribution of standardized Y and X values throughout a phylogeny is
bivariate normal. However, because the model does not assume normality
a non-parametric test of correlation might be used instead. Either test
assumes that the characters are evolving independently in each branch of
the tree, and that ancestral conditions are known independently of the
species values. In practice, neither of these assumptions is likely to be met.
Ancestral conditions will be reconstructed from the species’ values. This
introduces some dependency between the higher nodes and the tips. As a
result, treating each branch of the tree as an independent data point
probably overestimates the true number of degrees of freedom. For
example, two sister species with the same character state will cause the
reconstructed ancestral condition to be that state, whether it was in fact or
not: the reconstructed ancestral condition, then, is not independent of the
two species.

The extent of non-independence between the tips and the higher nodes
depends upon the distribution of character states among extant species. An
extreme example, that of all species having the same character state, fully
determines all higher nodes. Further, the reason for a lack of character
change in some branches may be shared among them. Without simulation

studies of a variety of realistic situations, it is difficult to know how much
Ut to K1

bias will beinmtroduced if all branches of the tree are counted in the test. A
bifurcating phylogeny of 7 species will always have 2n —2 branches, but
probably closer to n—1 true degrees of freedom if the higher nodes are
reconstructed from the tips. But consider a phylogeny with a large number
of branches in which only a few show a character change. If the model
developed here is used, and all branches are counted, a significant result is
likely to emerge. One suggestion, then, is to use the data from all the
branches but to assign only n—1 degrees of freedom to the statistic. A
more conservative approach is to use all of the data to estimate likelihoods
but only use in the statistical test the data from branches in which one or

both variables change.
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4.7 Estimating transition probabilities by maximum
likelihood

It is necessary to have information on branch lengths, and on the probabilities
of transitions in order to apply the model we have described. Branch length
information is becoming increasingly available (see, for example, ref-
erences in Springer and Krajewski 1989), and we assume for the moment
that the limiting information will be on transition Eo_umcm::mm; is
possible to estimate transition probabilities, if one is willing to assume that
the likelihood of a transition in a particular direction, (e.g. 0 to 1) for a
particular character is constant throughout the tree ] We describe here a
maximum likelihood approach for estimating the Tansition probabilities
from real data.

We assume that a phylogeny is available along with branch lengths. The
problem is to estimate the transition probabilities in each character in such
a way as to maximize the likelihood of the particular distribution of
characters given the phylogeny. We describe here how to find the
transition probabilities for the character X. However, all of the equations
for a second or other characters are the same. The overal! likelihood of the
distribution of character states in X for a particular tree and values of o and
B is given by:

L(D) = TI(Po; (£) )TT(1 = Poy () TI(P1o(1) (1 —Pyo(t)).  (4.9)

where the first product is found over the branches showing a transition
from 0 to 1, the second product is over the branches showing ‘a transition’
from 0 to 0, and the third and fourth products are for transitions from 1 to 0
and 1 to 1, respectively. We seek the values of o and f that maximize L (D)
where "D" signifies that the likelihood is found for the data given the tree.
Equation (4.9) can be expressed as a log-likelihood:

log [L(D)] = Zloge(Po; (1)) + Zloge(1~Poy(t;)) + Zloge(P1o(tk))
+ 2 loge(1-P1o())- (4.10)

Analytical solutions to these equations will not be possible in most
instances, so an iterative search procedure must be used to find the values
of a and B that maximize equation (4.10).

In Box 4.4, we analyse the correlation between X and Y for the
phylogeny in Figure 4.2 using maximum likelihood estimates obtained
from an iterative solution of the log-likelihood equation (4.10).
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4.7.1 What if branch lengths of the phylogeny are not known?

Fven when branch lengths are not known it should still be possible to
improve upon merely ignoring the issue of transition probabilities. We can
ask, for a given trec with unknown branch lengths, what values of « and
maximize eqn (4.10)? The transition probabilities and the branch lengths
are inseparable as all branch lengths are assumed to be equal. We assume
that their product is a constant and estimate it by maximum likelihood just
as we did previously. Under these conditions, the maximum likelihood
cstimates of « and B will, at least, take into account the pattern of
transitions in the phylogeny, if not the branch lengths along which they
occur. Moreover, a and B take values in this case that yield reassuring
results. When all branch lengths are assumed to be equal, the values of «

Box 4.4. Standard score analysis of the data from Fig. 4.2 using
maximum . likelihood estimates of the transition
probabilities

L. By maximum likelihood estimation

X: o =0.00857, B =:0.00585
Y: o= 0,010013, 8 = 0.014635

II. Standard score analysis

Branch X Y 1 B [ N S . . .
: x Y X Y %m|tx % and B will be such that the predicted character state for any branch
- X Y beginning with 0 is simply the proportion of such branches that showed a
40 0.18 0. . . E :
ng—->S1* 11 111 0.37.038 048 +047 +0.76 change from 0 to 1, and the predicted character state for any branch
482 131 1—0 40~ 0.18 0.37 0.38 048 +0.47 -1.31

beginning with 1 is just the proportion of such branches showing a transition
from 1 to 0: for character X in Fig. 4.2, then the value 0.25 is predicted for
all branches beginning in 0 and the value 0.167 is predicted for branches
beginning in 1, assuming that all branches are of length 1.0.

n§—3§3 * 050 0-50 10 0.08 0.1070.27 030 ' -0.29 -0.33
ng—>84 * 00 0-s0 ~10° 0.08 .0.10.0.27 0.30" -0.29  -0.33
ng—>S5 * 050 050 200 0.15 017 0.36 '0.38 -0.42  -0.45
ng->S6 * 0550 050 207 0.15..0.17 036 0.38 -0.42  -0.45
n7—S7 * 1511051 <107 .0.05 0:137.0.23 034 +0.24 +0.39

n75S8 % 1o1 1-51 10 0.05 0.13 0.23 034 +0.24 +0.39 - 4.8 Applying the statistical model to a real data set

ng->nq 151 0-s1 507 0.210.31 0.41 0.46 +0.51  1.50

n3—-ns 150 0-0 80 - 0.28..0.37 0.45 048 -1.61 -0.77 : Most species of the dog family Canidae can be classified as either

n3—>ng 00 150 50 - 031041 046 049 -0.66 -1.19 7 carnivorous or omnivorous and also as either showing limited biparental or

n3-sny 01 1—1 60 034 045 048 050  1.38 +0.90 more extended communal care of the young; data are given in Gittleman

ny-mny 01 00 70° 038 0.36 048 048  1.28 -0.75 = (1983). Is there a relationship between diet and the evolution of communal

n1—n3 050 0-51-90 043 . 0.38 0.50 0.49 -087  1.27 care in canids as suggested by Gittleman (1985)? We can make use of a

phylogenetic tree of the canids recently compiled by Wayne and O’Brien

* Branches along which neither character changes: - . i (1987) and Wayne et al. (1989) based on isozyme genetic distance data and

:\—/\.Mnmwmnwwnw.wm.w.ﬁbamaﬁmm scores are assigned accordingto the convention adopted : supported in part by DNA hybridization (Fig. 4.7).

Fourteen carnivore species are included in the sample, providing a
. : phylogenetic tree with 22 branches along which path lengths can be
. mwae.am: rank correlation test for correlated evolution of V measured. The Spearman rank correlation between standardized scores for
characters the two variables obtained by applying the procedures in Sections 4.6 and
For the 7 branches in which one or both variables change: 4.7 is highly significant (r,=0.55, P = 0.01). However, perhaps more
rs=025P=054. ‘ appropriately, using only the five branches in which one or both characters

pprop Yy g only

For all 14 branches: 3 changes (Section 4.6), the correlation becomes non-significant (r, = 0.50, P
rg=031,P =026 . =0.32)
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Species 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15
00 00

XY i1 11 11 01 10 00 00 00 00 00 11 10 00

ni

Fig. 4.7. Phylogenetic tree for fourteen canid species, with the black bear Ursus
americanus used as an outgroup. Species 1 to 4 are: (1) grey wolf Canis lupus; (2)
coyote Canis latrans; (3) cape hunting dog Lycaon pictus; (4) black-backed jackal
Canis mesomelas; (5) bush dog Speothos vanaticus; (6) maned wolf Chrysocyon
brachyurus; (7) crab-eating fox Cerdocyon thous; (8) grey fox Urocyon cinere-
oargenteus; (9) raccoon dog Nyctereutes procyonoides; (10) cape fox Vulpes chama,
(11) red fox Vulpes vulpes; (12) fennec fox Fennecus zerda; (13) kit fox Vulpes
velox; (14) arctic fox Alopex lagopus. Ancestral character states were calculated
using Maddison et al.’s (1984) method (see Chapter 3, Box 3.1). Character X state 0
is omnivory, and state 1 is carnivory. Character Y state 0 is non-communal care,
and state 1 is communal care. Approximate times before present (my) and
ancestral character states (in parentheses) estimated according to the parsimony
procedure described in Box 3.1, for each node are: nl 16.75 (00); n2 9.0 (00); n3 7.0
(00); n4 6.5 (00); n5 6.0 (11); n6 5.25 (00), n7 3.0 (11); n8 2.75 (00). (Phylogeny
after Wayne et al. 1989).

4.9 Relationship of the statistical model to previous
methods

4.9.1 The method of counting evolutionary events

Ridley’s method for counting evolutionary events succeeds in deriving a set
of independent data points, at least within the limitations of the methods
used to reconstruct ancestral character states. However, each of the
evolutionary events is given equal weight in the final chi-square or Fisher’s
exact test. But the model in the previous section shows how the likelihood
of a character transition depends upon the length of the branch in which it
occurs. What assumptions are implicit in assigning all branches equal
weight?
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Ridley’s test can be understood in terms of the model presented in the
previous section by noting that the chi-square statistic for a 2 x 2
contingency table is related to the correlation coefficient by the formula
chi-square = nr” where n is the number of pairs of observations and 7§ e

correlation coefficient between two dichotomous discrete variables (also
known as the phi-coefficient). Thus, Ridley’s test is simply a correlation of
changes along the interior branches of a phylogeny, where all changes are
assigned a 1 or a 0, and branches in which no change occurs are ignored.
The assumptions implicit in assigning equal weight to all transitions are
made more clear by considering the example in Box 4.5. There we have
calculated standardized scores after making all branch lengths in Fig. 4.2
equal to 10 and setting all four transition probabilities (o and B for X and
Y) to a single value such that the standardized scores all take the values +
1.0 or —1.0. Doing this yields a phi-coefficient (or equivalently a chi-
square) for the overall test that is identical to that obtained by Ridley’s
test. This result will be true in general, not just for the example of Fig. 4.2.
Ridley’s test. then, in weighting all changes equally assumes implicitly that
all branch lengths are the same. and_that o —=p _for both characters

(however o and B for X need not be equal to o and 8 for Y).

A further assumption of Ridley’s model is that branches in which no
change occurs are irrelevant to the hypothesis; that is, Ridley’s method
only counts branches in which one or both of the characters change. By
.ignoring branches in which no change occurs, Ridley’s method is. in_terms’

of the statistical model, assigning them a path length of zero (that is, the

path does not exist).

4.9.2 The method of directional change

How does Maddison’s test relate to the statistical model? The main feature
of Maddison’s test is that it considers all possible combinations of the ways
that a certain pattern of transitions could evolve. As our worked example
showed, this is equivalent to finding all possible redisiributions on the tree
of one of the characters, namely, the one taken as the dependent variable,
while holding constant the placement on the tree of the independent
variable transitions. Each of these redistributions is then counted once in
arriving at the values for the numerator and denominator of Maddison's
test.

But these different ways of assigning the transitions to the tree are not
equally likely if branch lengths differ. We can estimate the likelihood for
any possible redistribution of the characters in a tree in terms of the model
in eqns (4.1) to (4.4). This statement would be equivalent to that given in
eqn (4.9) and would be calculated for the transitions in the dependent
variable. In terms of Maddison’s model, a different probability statement
can be calculated from eqn (4.9) for each of the possible redistributions of

3_3;,
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Box 4.5. Comparison of Ridley's method of counting evolutionary
events with the general statistical model, assuming equal
branch lengths and transition probabilities

The data from Fig. 4.2 are used, but path lengths are assumed to be equal.

1. Method of counting evolutionary events

A 1ally of end-states in branches showing changes in X or ¥ produces the 2 x 2
contingency table:

X

0 1
Y 0 2 2
1 2

ai=019 =\ -017 P =0.66

1. Statistical model
Assume all branch lengths = 10
Set o= B = 0.50

From eqns (4.5) and (4.7) or Box 4.3:
0.5 <
My = 3 (1- exp[-(0.5 + 0.5)10]) = 0.50; By = 0.5.

From egns (4.6) and (4.8):

cou=N052 =
Oy =Oy= 0.54 = 0.5.

This general result is true for any common path length. For example, if all
branch lengths are 50 and the transition probabilities are 0.10, the means and
standard deviations are still 0.50. In this example, the standardized scores are
arbitrarily given the same sign if the end-states match: +1 for end-states = 1, -1

moﬂmna.mnm”wmncﬁmwmodmOmmwnncza.o.c..Samwm equivalent to Ridley’s
method.
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Branch End-State Standardized mgnw\

1
-1
-1
-1

1
-1

1

1
-1
-1

1
1 1
-1 -1
-1 -1

n4—1*
nq4—2
ns—4 *

e [P

'
—

n5—3 *
n2—n4
n3—ng
ny—7*

—

n7—-8 *

— P

ng—3 *
nj—ny

.
—_ e

nj—nj3
n3—n7y
n2—sns

OO O e D O O D eI
e =T TR = B S S S = B R - R o
'

ng—6 *

When branches with no change (marked *) are ignored, a 2 x 2 contingency table
comparing the number of branches for which the standardized Xs m.b& Ys take the
same or different values (+1 or -1) produces the same result as the previous method:

Standardized
X
S I |
Standardized Y -1 w W

Association statistics are, of course, also identical.

The analysis derived from Ridley's model is seen to be equivalent to the general
model if all branch lengths are assumed to be equal, and o = B for each character.
These circumstances will yield standardized scores of +1. Ridley's method does not
count branches along which there is no change of character state.
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the character transitions on the tree. These different likelihood statements
will not all take the same value, because, depending upon branch lengths, a
transition may be more or less likely in one part of the tree than in another.
The sum of the probabilities of all possible redistributions would conform
to Maddison’s quantity b. But now this quantity would not assign each
redistribution an equal weight, but rather a weight based on the probability
of that particular redistribution. A subset of the possible redistributions of
the character on the tree will conform to the quantity ¢ in Maddison’s test.
The test statistic would then be a weighted version of Maddison’s where

each of the possible redistributions pertaining to Maddison’s quantities a

and b would be weighted by its probability of occurrence:

S (74
Py =Y

2 (ys) (4.11)

where P(Y|X) is the probability of the character transitions in Y (the
dependent variable) arising by chance given the distribution of the X
variable transitions, y, are the weighted redistributions according to
Maddison’s quantity a, and y, are all of the possible weighted redistribut-
ions.

We have calculated the different likelihoods for the nine possibie
redistributions of character states for the phylogeny of Fig. 4.4, according
to the branch lengths shown in Box 4.6, and using the transition probability
derived from the maximum likelihood solution. In this instance, only « is
estimated since there are no back transitions in the tree, and thus g = 0.0.
Not surprisingly, some of the redistributions are substantially less likely
than others. For example, the redistribution corresponding to the two
transitions occurring in the shortest branches of the tree is about 1/60 as
likely as the tree with the two transitions in the longest branches. The ratio
test for the observed tree (Fig. 4.4) is 0.076. This compares with 1/9 or
0.111 for Maddison’s test. The statistical model gives a slightly smaller
probability in this instance by recognizing that one of the transitions
occurred in a very short path segment.

Like Ridley’s method, the implicit assumptions of Maddison’s test in
assigning all possible redistributions of characters equal weight are that all
branch lengths are equal and both transition probabilities (Maddison’s test
only studies transitions in the ‘dependent variable’) are the same. To see
why, consider that each of the possible redistributions must be given the
same probability by eqn (4.9). That is, all of the ys in eqn (4.11) must take
the same value. Making all the branch lengths equal in the likelihood
statement of eqn (4.9) and choosing « and B appropriately makes all the
transitions have a probability of 0.5. Then, each redistribution has the
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Box 4.6. The ratio test for the phylogeny shown in Figure 4.4

1. Assume unequal branch lengths as shown in the Figure below:

20 20
40
70 20

30

The maximum likelihood estimate for o in this tree is 0.0134. Using this value,
we can find the likelihood for each of the nine possible arrangements in Box 4.1.

Arrangement Likelihood
Ot O

{(from Box 4.1) y=TI(1-e e ™)
1 0.39 * 0.67 * 0.59 * 0.77 * 0.24 * 0.24 = 0.0065
2 0.39 * 0.67 * 042 * 0.77 * 0.24 * 0.77 = 0.0149
3 0.39 * 0.67 * 0.42 * 0.77 * 0.77 * 0.24 = 0.0149
4 0.39 * 0.67 * 0.42 * 0.24 * 0.77 * 0.77 = 0.0149
5 0.61 * 0.67 * 0.59 * 0.77 * 0.77 * 0.24 = 0.0328
6 0.61 * 0.67 * 0.59 * 0.77 * 0.24 * 0.77 = 0.0328
7 0.61 * 0.67 * 0.59 * 0.24 * 1.00 * 1.00 = 0.0560
8 0.61 * 0.67 * 0.42 * 0.77 * 0.77 * 0.77 = 0.0757
9 0.61 * 0.33 * 1.00 * 1.00 * 1.00 * 1.00 = 0.2016
Z

P =222
Z(b)

0.0328
For example, P (¥1X) for arrangement 6 =0.4501 = 0.073
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. iscussion

extreme cases. For example, if all species have the same value of the

IL. Assume, instead, that character. then i i
S u: m&w all w”ﬂuo: lengths B..o.onﬁ_. If all ‘branch lengths = 70 and haracter. then all higher nodes will be reconstructed to have that
Cansition, 1a.0.50, w_,ﬂws. at the probability ‘of each path, with or without a character (see also discussion at end of Section 4.6.1). =
Another difficulty is the assumption that the transition probabilities adr @Nm. nsidian

msam%mamn m:mo,.H::mmmgowmamaﬁﬂm,\mébwk.m \
considerably, then the scalings of X and Y will be incorrect. There is good fae
reason to expect that adi and Bdr will vary (see Diamond and May 1977 for
an example from island biogeography). However, this is not a limitation of
the formal models (indeed the problem also plagues Ridley’s and
Maddison’s methods), but of our understanding of which taxa should and
_should not be included in the same analysis. A related problem, perhaps, is

y = (0.50)° for each redistribution

200 . (0.50)8 1
POYX) = = =z
MB0= Lo 9(0.50)6 9

for any redistribution

Thus, Maddison's test makes all arran i i
f ; gements equally likely b tti;
lengths equal and choosing transition probabilities to be EW wE:m.z y setting paih

that ancestral character states frequently will have been found according to
a parsimony rule, but the statistical model assumes a Poisson process
underlying the changes of character states. The effect this might have on
the performance of the method has not been investigated.
Computer simulation studies, such as we report in Chapter 5, are needed
to determine how seriously these issues may affect the statistical tests.
[Preliminary evidence concerning a problem of non-independence of
4.10 Discussion - branches with a method for .ooznsco:m <m1.~&_wm suggest that Eo omm.ﬁm
may not be serious (see Section 5.10)§ Lacking evidence from simulation
studies, there seem to be two courses of action, one more conservative
than the other. The first involves reducing the number of degrees of
freedom for statistical tesis. Felsenstein (1985a) shows that n—1 independ-
ent comparisons between species and higher nodes can be derived from a
bifurcating phylogeny with n species. Using this number would approxim-
ately reduce by half the number of degrees of freedom compared to
counting all branches as independent points. A more conservative i
approach is to use in the final analyses only those branches in which one or
the other character changes. .
Another class of solutions would avoid conditioning the comparative test
on any one particular set of higher nodes!® fThe idea is to estimate the four  Jranselies

same Eovm_&:i of occurrence, and the overall likelihood of any particular
outcome 1s just the sum of the (now all equal) probabilities that make up

the quantity a divided by the sum of the (all equal) probabilities that make
up the quantity b, or a/b.

This o.:m?mn has described Ridley’s method for assessing correlated
m<o_§._o:m3\ change in dichotomous variables, and Maddison’s method for
detecting the direction of evolutionary change. We showed how both of
Emw.@ .5090% could also be thought of as special cases of a more general
statistical model that takes into account information on branch lengths
Hr@ general model can be applied to any data set by using the Bmch&
likelihood procedures for estimating the model’s parameters.

In-the hypothetical examples that we used to introduce the statistical
model, we assumed that the phylogeny and the ancestral states were
known without error. This luxury of course will seldom be obtainable with

2

. .5 real data sets, an itis i . s AL

V.t.,.v,r/,a.y the tests that émaswoﬂmﬁ %_.“M%H%:ﬂowqmmomwmoﬁmw MMMM%MMJME : transition probabilities (X and Y changing from 0 to 1 and 1 to 0 7’ bl
o> @Q that each of the branches of the tree can be used a - €.assumption independently of each other from the counts of the numbers of each kind
eE,o/.(w et point in testing for the correlation of ch S an independent am@ : of transition throughout the phylogenyj For any set of transition
\w? bifur N of changes between ¥ and X Tna probabilities it is possible to calculate The likelinood of all possible

bifurcating tree with » tips, there wi ;
freedom mma analyses. I%€m<3 moewﬂﬂ_“,\w_%ommwm mowm Hw::aL a mwmsﬁ degrees of ! reconstructions of ancestral character states. This likelihood can be
(© degrees of freedom. The firgt is that if. for exam e re may be fewer actual . compared with that derived from the set of transition probabilities that
% ! p'e, an ancestral node is in maximize the likelihood of finding the extant character states. Much work

state 0, then each daughter node that radiate it i i
> g s from it is constrained : ; i i
4 i . remains to be done in this area.
@ .m;:Q 6 change to 1 or not at all: they cannot change from 1 to 0. Second, . i YT
in most instances the ancestral nodes will not be know dwi The examples that we have used to illustrate the model have all used ‘5
NEes the ancestr known and will have to be A bifurcating phylogenies. Even if some branches of the tree are not resolved Bfircat,

estimated from the species values. This introduces dence between

the m:nomZIm_uwmnalymorg ant states that is not easily quantified, except in

10 we thank Joe Felsenstein for this idea.
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to this level, however, it is still possible to calculate standard scores. A
multifurcating_node can_be thought of as representing two or more

e vl S e 2

bifurcating nodes joined (implicitly) by a path or

" path or paths of zcro length. The
issue, then, is whether there have been any transitions along these
paths. Probably the safest way to deal with a multifurcating node is to
calculate only one standard score for each end-state represented among the
sub-nodes (i.e. up to a maximum of two; see also Maddison 1989).

We have chosen a particular evolutionary model to describe the
evolution of two dichotomous characters. More realistic alternatives may
be possible. For example, rather than conceptualizing transitions between
characters states as discrete jumps, there may be an underlying _quanti-

tative dimension whose phenotypic expression is two character states.
Whether an individual is in one or the other state would depend tipon the
effects of many genes. Beyond a certain threshold along the dimension, an
individual has one of the states, below the threshold it has the other (see

discussion in Felsenstein 1988). A feature of the threshold model would be

that not all individuals in the same state have the same probability of

changing to thé other: those closer to the threshold are more likely to

change. Although the mathematics of this method are not yet worked out,
it seeths a promising approach.

Statistical and mathematical models of evolution are often criticized as
biologically implausible or unrealistic. However, even techniques that
apparently are not based on an evolutionary model may in fact just be
special cases of implicit evolutionary models. These special cases may be

even less realistic than the models. Thus, even if models are biologically

_unrealistic, they serve important functions. One is to make explicit the

consequences of the assumptions made implicitly when using existing

methods. For example, different redistributions of character changes on a
phylogenetic tree varied 12-fold in their likelihood of occurrence according
to the statistical model, and yet all were given the same weight by
Maddison's method. An equally important function of models is that they
force us to think clearly about the sorts of processes that are thought to
give rise to the phenomena we are attempting to understand. This will, no
doubt, lead to more complicated models that attempt to incorporate a
greater number of the factors thought to be giving rise to the observed
phenomena. Nevertheless, it is important to bear in mind that, in practice,
results will depend partly-on.the true phenomena under study, and partly

on the particular assumptions of the methods used. Where the conclusions

depend on the model used, this should be acknowledged explicitly, and
some justification should be given for choosing one model over another.
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4.11 Summary

. < of
This chapter develops a general model for the comparative analysis 0O

discrete data. The model is designed to be used n o.%:._:s%owrw”wﬁw%
phylogeny for which branch Esmﬂrmnm:ﬂ the @aovmgﬁ.:_mm e s
change, are known. A maximum likelihood @mcammo_ :w%m ot
described for estimating the latter, even érm:. Emso mmma S,
known. Thus, the model can be applied to ox_m::m.ammw . moﬁ: ommwm
methods for the analysis of categorical data can be derive mm: %o:oﬁsm -
of this model, by making particular assumptions about branc g

probabilities of character change.



