Predator-Prey Dynamics

Elton’s lynx-hare cycles

Single species
 Cycling related to time lags
 Increase when at low density causes crowding and “over compensation” next year

Predator-prey cycles are also related to lagged density dependence
 Prey increase
 Preds increase
 Preds begin to reduce prey density
 Preds begin to decline
 Prey begin to increase again…

Lotka-Volterra equations
 Neutrally stable cycles with period approx $2\pi*\sqrt{rd}$
 Exhibits “paradox of enrichment” or top down control
 Increase in prey production only increases predator density

Mathematical concept of stability
 Does small perturbation to a steady-state solution grow or die out?
 For continuous differential equations, stability related to slope of growth function in the vicinity of the steady state (negative slope stable, positive slope is unstable)
 Discrete time stability also determined by slope (derivative) of growth function at the steady-state (-slope > 1 is unstable)

Factors that can lead to stability in predator-prey cycles
 Change in predator functional response
 Prey switching by generalist predator
 Spatial variation in predator and prey density
 Reduction in the lag duration