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Optimal Control

To find out whether E. coli really knows what it is doing, Ed
Purcell and I thought hard about the theory of chemoreception—
I was the straight man—and concluded that its cells can sense tem-
poral gradients about as well as any other device of similar size
could possibly do (Berg and Purcell, 1977). And then my students
and I looked more closely at how changes in tumble probability
actually depend on the concentrations of attractants or repellents.

Time Resolution

To do this, we needed to stimulate cells in a known way and record
responses on a time scale smaller than 1 second. This is hard to do
by adding chemicals and mixing. Also, the problem is complicated
by the fact that the response is stochastic: the probability of
tumbling changes, but intervals between tumbles remain ex-
ponentially distributed. So one needs lots of data.

In recent work (e.g., Jasuja et al., 1999), ultraviolet light is used
to cleave a photosensitive molecule. One of the fragments
released is a chemical attractant (e.g., the amino acid aspartate).
This allows one to generate concentration jumps on the milli-
second time scale. We chose, instead, to use iontophoretic pipettes,
developed earlier by others to stimulate receptors at the neuro-
muscular junction. This allows one to generate pulses as well as
jumps, but on a somewhat longer time scale. The limit is the time
required for a small molecule to diffuse from the tip of the pipette
to a cell a few micrometers away, about 20msec. Our target was
either a tethered cell, fixed to glass by a single flagellar filament,
or a filamentous cell linked via a single flagellum to an inert
marker, as shown in Fig. 7.1. The first setup was used to probe the
chemotactic response at the level of a single flagellar motor (Block
et al., 1982) and the second to learn how signals are transmitted
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Ficure 7.1. Stimulation with iontophoretic pipettes. (a) The tip of a
pipette near a cell tethered to glass, such as the cell in Fig. 5.1. (b) The
tip of a pipette either off one end or along the body of a filamentous cell
linked by a single flagellum to an inert marker. This linkage was made
via an abnormally long hook, called a polyhook, to polyhooks of a
cell of normal size that had been treated with a chemical fixative
(glutaraldehyde). Filamentous cells were obtained by growing normal
cells in the presence of an antibiotic similar to penicillin (cephalexin) or
by using mutants defective in septation. Such cells have a single
cytoplasmic compartment.

intracellularly from the receptors to the flagella (Segall et al.,
1985). The pipette was filled with a solution similar to the medium
in which the cells were suspended containing, in addition, an
attractant [e.g., aspartate (Fig. 3.1) or its nonmetabolizable analog
o-methylaspartate]. At neutral pH, either amino acid has a net
charge of -1, so it is expelled from the pipette when the electrical
potential difference between the inside and the outside of the
pipette is negative.

Impulse Responses

One can learn a great deal about a mechanical system by exciting
it with a brief pulse. If, for example, you kick a sign post, it will
wobble back and forth at a frequency that depends on its stiffness
and mass and relax back to its initial quiescent state with a time
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constant that depends on the rate at which mechanical energy is
dissipated. You will get essentially the same result whether you
wear a boot or a tennis shoe. If the system is linear, that is, if the
way it responds to a new stimulus does not depend on how it is
responding to past stimuli, the response to the impulse allows one
to predict the response to any stimulus. Decompose the stimulus
of interest into a sequence of impulsive stimuli of different
magnitudes, weight the corresponding impulse responses by these
magnitudes, and add them up.

The same is true for biochemical systems. If you kick the aspar-
tate receptor by loading it up with ligand for a fraction of a second,
the reactions set in motion by that change will play themselves out
until the cell returns to its initial quiescent state. In practice, this
takes about 4 seconds (Fig. 7.2). The impulse response for E. coli
is biphasic. The probability that the motor spins counterclockwise
rises from the baseline soon after the onset of the pulse, reaches
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Figure 7.2. Impulse response of wild-type E. coli cells. The probability
that a cell spins counterclockwise (the bias) is plotted as a function
of time; the smooth curve is a fit to a sum of exponentials. Pulses of
aspartate or a-methylaspartate were applied beginning at 5.06 seconds
(vertical bar). The graph was constructed from 378 trials comprising
7566 flagellar reversals obtained with 17 cells. (From Segall et al., 1986,
Fig. 1).
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a maximum about 0.4 second later, crosses the baseline 1 second
after the pulse, reaches a minimum at 1.5 second, and finally
returns to the baseline at about 4 seconds. The areas of the posi-
tive and negative lobes of the response are equal (Segall et al.,
1986). :
From this analysis, it follows that wild-type cells exposed to
stimuli in the physiological range (stimuli that do not saturate the
response) make short-term temporal comparisons extending 4
seconds into the past. Stimuli received during the past second are
given a positive weighting, and stimuli received during the 3
seconds before that are given a negative weighting, and the cells
respond to the difference. The cells count molecules over a
substantial time span—this improves the precision of the count—
and then ask (within the time limit set by rotational brownian
movement) whether the concentration is going up or down. This
provides an optimum solution to the measurement problem,
a solution that is matched to the constraints imposed by the
physics discussed in Chapter 6. Simpler strategies, for example,
one in which a cell sets its tumbling probability on the basis of
measurements of the local concentration, do not work (Schnitzer
et al., 1990).

The impulse response for a negative pulse (one that lowers the
concentration of an attractant or raises the concentration of a
repellent) is similar to the response shown in Fig. 7.2, except that
it is of opposite sign (Block et al., 1982). Experiments with cells
exposed to ramps of either sign indicate that thresholds for posi-
tive stimuli are small, while those for negative stimuli are large
(Block et al., 1983). However, once these thresholds are crossed,
equal increments in ramp rate generate equal increments in rota-
tional bias, until the ramps are so steep that saturation occurs.
Thus, if a cell has fully adapted, small negative stimuli are ignored.
Evidently, this is why cells fail to respond when swimming down
spatial gradients of attractants or when exposed to attractants
destroyed enzymatically (see Chapter 4).

If one looks at these data in the frequency domain, one finds
that the sensory system behaves as a bandpass filter, with its
response maximally tuned to frequencies of a few tenths of a Hz,
approximately equal to those encountered when cells move up
and down in a spatial gradient, as shown in Fig. 7.3. Thus, E. coli
has matched its sensory system to the signals that it needs to
analyze.
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Figure 7.3. Impulse and ramp data viewed in the frequency domain. The
change in bias resulting from variations in the concentration of an attrac-
tant (a-methylasparate) at different frequencies are plotted in a log-log
scale. Data at the left were obtained from exponentiated sine-wave
stimuli, while data at the right were obtained from the Fourier transform
of the impulse response. The smooth line is a similar transform of the
smooth curve of Fig. 7.2. (From Segall et al., 1986, Fig. 3B.)

Simulations of the Biased Random Walk

Given the impulse response, it is possible to simulate the biased
random walk. Pick a run velocity and let the cell move by dis-
placing it, say, every 0.01 second. Weight the recent and more
distant past using the impulse response in the manner described
earlier. If the output of this computation is negative, that is, if the
concentration has been decreasing for some time, ignore the result
and determine whether the cell should tumble by picking at
random from an exponential distribution with a mean of 1 second.
If the output of this computation is positive, determine whether
the cell should tumble by picking at random from an exponential
distribution with a larger mean (one with an exponent decreased
in linear proportion to that output). If the cell is tumbling, deter-
mine whether it should run by picking from an exponential dis-
tribution with a mean of 0.1 second. In either case, if a new run is
called for, pick the change in angle from the old to the new run at
random from a distribution peaked in the forward direction (Berg
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and Brown, 1972, Fig. 3). Finally, add the effects of brownian
rotation by giving the cell a small kick in angle every iteration.
When watching such tracks evolve on a computer screen, one
gets the impression of a bloodhound following a scent. The cell
sniffs about (with the bias close to the baseline), picks up the
spoor, and then howls up the gradient. Eventually, rotational
brownian motion carries it off the track, and it is forced to sniff
about again. Most of the progress up the gradient appears to occur
in long runs.

Intracellular Signaling

Experiments of the sort sketched in Fig. 7.1b were used to study
the range of the intracellular signal that couples the receptors to
the flagella (Segall et al., 1985). Stimuli delivered at one end of a
filamentous cell did not affect the response at the other end. There
was no evidence for long-range signaling, as would be expected,
for example, were the receptors to signal the flagella by changing
membrane potential. Motors near the pipette responded, whereas
those far away did not. The response of a given motor decreased
with distance, but it did so less sharply when the pipette was
moved along the cell surface (to the right in Fig. 7.1b) than when
it was moved out into the external medium (to the left in Fig.7.1b).
This implies that there is an internal signal, but that its range is
short (only a few micrometers). The data could not be fit by
models in which the receptor simply releases or binds a small
molecule or in which a receptor-attractant complex diffuses to the
flagellar motor. However, they could be fit by a model in which
the signal is a ligand or a small protein that is activated by the
receptor and inactivated as it diffuses through the cytoplasm. As
we will see in Chapter 9, this molecule proved to be a small
protein, CheY, which is active when phosphorylated and inactive
when not.
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