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Physical Constraints

For a microscopic organism living in water, such as E. coli, con-
straints imposed by physics are immediate and compelling. These
limit the means by which cells are able to swim, define the dis-
tance that they must move to determine whether life is getting
better or worse, and set the time scale for their behavioral
response. To appreciate what E. coli has accomplished, we need to
look at some of the physics that E. coli knows.

The physics that looms large in the life of E. coli is not the
physics that we encounter, because we are massive and live on
land, while E. coli is microscopic and lives in water. To E. coli,
water appears as a fine-grained substance of inexhaustible extent,
whose component particles are in continuous riotous motion.
When a cell swims, it drags some of these molecules along with
it, causing the surrounding fluid to shear. Momentum transfer
between adjacent layers of fluid is very efficient, and to a small
organism with very little mass, the viscous drag that results is over-
whelming. As a result, E. coli is utterly unable to coast: it knows
nothing about inertia. When you put in the numbers (Berg, 1993)
you find that if a cell swimming 30 diameters per second were to
put in the clutch, it would coast less than a tenth of the diameter
of a hydrogen atom! And a tethered cell spinning 10Hz would
continue to rotate for less than a millionth of a revolution. But
cells do not actually stop, because of thermal agitation. Collisions
with surrounding water molecules drive the cell body this way and
that, powering brownian motion (Brown, 1828). For a swimming
cell, the cumulative effect of this motion over a period of 1 second
is displacement in a randomly chosen direction by about 1 um and
rotation about a randomly chosen axis by about 30 degrees. As a
consequence, E. coli cannot swim in a straight line. After about 10
seconds, it drifts off course by more than 90 degrees, and thus
forgets where it is going. This sets an upper limit on the time avail-
able for a cell to decide whether life is getting better or worse. If
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it cannot decide within about 10 seconds, it is too late. A lower
limit is set by the time required for the cell to count enough mol-
ecules of attractant or repellent to determine their concentrations
with adequate precision. The number of receptors required for this
task proves surprisingly small, because the random motion of mol-
ecules to be sensed enables them to sample different points on the
cell surface with great efficiency.

Viscosity

If you take a thin wire, hold it vertically, and drop it in a viscous
medium, it falls straight down at some velocity, v. If, instead, you
drop it horizontally, it falls straight down at about half that veloc-
ity, v/2. The viscous drag on the wire (the force per unit velocity
that resists its motion) depends on the orientation:it is about twice
as large when the wire moves sideways than when it moves length-
wise. As a consequence, if you drop the wire slantwise, say tilted
downward to the right, it falls slantwise to the right. A formal
analysis of a closely related problem, in which a wire is held slant-
wise and pulled straight downward, is shown in Fig. 6.1.

E. coli carries out this experiment by wrapping the wire into a
helix and turning it about the helical axis, as shown, for example,
in Figs. 5.4 and 5.5. The helix behaves like a series of wire segments
pulled downward or upward, slantwise, in such a way that the
forces generated by each segment in a direction parallel to the
helical axis add up, providing the thrust that moves the cell body
forward. If the cell (with its flagella) swims at a constant speed
(does not accelerate or decelerate), it does not experience any net
force; therefore, the thrust generated by the rotating helix must be
balanced by the drag on the cell body. The same argument applies
to rotation: the torque exerted by the flagellar motors on the fila-
ments must be balanced by counterrotation of the cell body.
However, since the body is relatively large, it turns relatively
slowly. So when E. coli swims, the flagellar bundle spins one way
on the order of 100 Hz, while the cell body rolls the other way on
the order of 10Hz; the cell with its flagella moves forward at
speeds of order 10 body lengths per second. For a human being,
10 body lengths per second is about 40 miles per hour!
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FIGURE 6.1. A thin wire held slantwise and pulled downward through
a viscous medijum at velocity v. This velocity can be decomposed into
components perpendicular to the wire and parallel to the wire, as shown
below the wire. The drag due to the perpendicular component is twice
as great per unit velocity as the drag due to the parallel component, as
shown by the dotted lines above the wire. The net drag is F It is not
vertical but is tilted to the right, so it has a horizontal as well as a ver-
tical component, as shown by the dashed lines. The horizontal compo-
nent tends to move the wire to the right. If the wire were a segment of
a rotating helix, this component would provide thrust. The vertical com-
ponent opposes v, and thus determines the power required to move the
filament. If the wire were a segment of a rotating helix, this component
would contribute to the torque required to rotate the helix. For the ori-
entation shown (55 degrees from vertical), the ratio of the horizontal to
the vertical components (0.354) is maximum.
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Reynolds Number

In a viscous medium, the ratio of the forces required to acceler-
ate masses (inertial forces) to the forces required to generate
shear (viscous forces) is called the Reynolds number, R. For a
swimming creature, R = lvp/n, where [ is the size of the creature,
v is its velocity, p is the density of the medium, and 7 is the vis-
cosity of the medium (a coefficient that characterizes its resistance
to shear). For E. coli swimming full speed in water, R ~ 107
(1/100,000). For a human paddling slowly in a swimming pool, R
=~ 10° (100,000). We are much bigger (/ is much bigger) and we
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move much more rapidly (v is much bigger). So, in a certain sense,
our experience in water differs from that of E. coli by a factor of
10"°. Our inertia is large, and it is easy for us to push off and coast
from one side of the pool to the other. If you want to model what
life is like for E. coli on a larger scale (by scaling up / and/or v),
then you also must scale up 1 (work with a highly viscous
medium). So use glycerol or corn syrup or a thick silicone oil,
and don’t move things too rapidly. This restriction was not clearly
understood until the work of Ludwig (1930), whose contribution
was forgotten by the time the problem was taken up again by
Taylor (1952).

Ludwig noted a remarkable thing about motion at a low
Reynolds number. If a pattern of displacements is reversed in time
(neglecting diffusion), all elements of the system return to their
initial positions, cell and fluid alike. The rate at which these dis-
placements are carried out does not matter. Ludwig illustrated this
point by imagining a creature with two rigid oars attached to the
cell body by hinges, as shown in Fig. 6.2. The organism strokes
its oars rapidly downward and returns them slowly upward. At a
low Reynolds number, the cell body moves rapidly upward and
then slowly downward, returning to its initial position. At a high
Reynolds number, on the other hand, it moves farther during the
power stroke than during the recovery stroke. There are micro-
scopic unicellular algae that look somewhat like this cell (e.g.,
Chlamydomonas). However, they move their flagella in different
ways during the power and recovery strokes: far from the cell body
during the power stroke and close to the cell body during the
recovery stroke (as in the human breast stroke). This motion is
cyclic but not reciprocal; that is, the pattern is not reversed in time.
Therefore (as Ludwig noted), it works at a low Reynolds number.
The flagellar motion exhibited by E. coli also is cyclic: as long as
the flagellar filaments turn steadily counterclockwise, the cell
swims steadily forward.

Vivid images of this world were evoked by Purcell (1977) in
an article titled, “Life at low Reynolds number.” Suppose, for
example, that you are immersed in a swimming pool full of
molasses and are allowed to move parts of your body no faster
than the hands of a clock? According to Purcell, “If under those
ground rules you are able to move a few meters in a couple of
weeks, you may qualify as a low Reynolds number swimmer.”
This world, while rather baffling to us, is one that E. coli knows
intimately.
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FiGURE 6.2. An organism propelled by two rigid oars, according to
Ludwig (1930, Fig. 2). The oars move up and down between positions 1
and 2. A microscopic organism of this kind would just jiggle up and down.
A macroscopic one, on the other hand, could swim by pulling the oars
rapidly downward and returning them slowly upward. The arrows and
Greek symbols in the figure relate to Ludwig’s analysis of the problem,
not examined here.

Diffusion

It is more difficult to model the utterly random motion due to ther-
mal agitation. Whereas one can study the motion of macroscopic
objects at low Reynolds numbers by working in highly viscous
media, it is difficult to scale up a diffusion coefficient. There are no
liquids with viscosities much lower than that of water, and work in
gases is not practical because of perturbations due to gravity,
notably, sedimentation and convection. It is easier to use a micro-
scope and think small. The major take-home lesson is this: diffusive
transport over small distances is very efficient, while diffusive
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transport over large distances is very inefficient. Diffusion times
increase as the square of the distance. Thus, a small molecule in
water can diffuse the width of E. coli (1 um) in a few milliseconds.
To diffuse the width of your finger (1.5cm), it takes about a day.
To see how this comes about, consider a one-dimensional
random walk. An ensemble of small creatures live on the x-axis
and step with probability 1/2 to the right (+) or to the left (-) a
distance & every 7 seconds. A record of the progress of six such
creatures after 10 steps would look something like this:

Steps taken Distance moved Distance squared
N -64 3687
o 0 0
+t—t——t— +26 487
||||||| +++ -46 166°
—t—t—t++——t 0 0

b — bttt +28 468°

This list was generated by flipping a coin. Some creatures drift to
the right, some to the left, but on average—one needs a larger list
to prove this—they go nowhere. The mean displacement for this
list is {x) = —6, where the brackets denote an ensemble average.
But the creatures have spread out, and one can get a measure of
this by computing their mean-square displacement (the average
of the square of the displacement), which for this list is (x?) = 105
The mean-square displacement increases linearly with the number
of steps (see Berg, 1993, Chapter 1). For example, if you break this
list in half and treat it as 12 creatures each taking five steps, you
will find a mean-square displacement 6.38°%, which is about half as
large as before. Now, if ¢ is the running time for the experiment,
the number of steps is /7, so (x?) = (#/7)8* = (6*/7)t. The coefficient
that characterizes step distances and step times is commonly
written D = §%2t, which gives (x*) = 2Dt. This is the mean-square
displacement for one dimension. Similar equations can be written
for motion along the y and z axes. If the motions along the x, y,
and z axes are statistically independent (the usual case), then the
mean-square displacement in two dimensions is (x> + y? = 4D,
and the mean-square displacement in three dimensions is (x* + y*
+zH =6Dt

D is called the diffusion coefficient. It depends on the size of
the particle (and to a lesser extent, its shape), the viscosity of the
medium in which the particle is immersed, and the temperature.
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For a small molecule in water D = 10 cm¥sec = 10”° m%sec. So
when I said a small molecule can diffuse the width of E. coliin a
few milliseconds, what 1 really meant was ¢ = (x*/2D = (10°m)¥/(2
x 10 m?%sec) = 5 x 10~*sec. That is, if a molecule starts out at one
side of the cell at time 0, the chances are pretty good that it will
reach the other side within a millisecond. But the chances are
equally good that it will have gone a similar distance in the oppo-
site direction (neglecting the impediment of the cell wall). The dif-
fusion coefficient characterizes a spreading distance, not a velocity.
Indeed, there is no such thing as a diffusion velocity: because of the
square, it takes a set of diffusing particles four times as long to
spread twice as far. To diffuse 1.5cm, t = (1.5 X 107 EVN\Q x
10 m?/sec) = 1.1 x 10°sec = 1.3 days. For globular-shaped particles
in water, D is proportional to T/ar, where T is the absolute tem-
perature, a is the radius of the particle, and 7 is the viscosity of
water (which is smaller at higher temperatures).

A simulation of a two-dimensional random walk is shown in
Fig. 6.3. Diffusive transport over small distances is very efficient:
the plotter pen tended to explore some regions of space rather
thoroughly, returning to the same point many times before wan-
dering away for good. Diffusive transport over large distances is
very inefficient: when the plotter pen did wander away, it did so
blindly, with no inkling of where it had been or where it might go.
As a result, some parts of the plot are filled in, and others are quite
empty.

FIGURE 6.3. An x,y plot of a two-dimensional random walk of 21,537
steps. At each step a computer flipped a coin twice and moved the plot-
ting pen diagonally, to the right upward for +,+; to the right downward
for +,— to the left upward for —+; and to the left downward for ——. The
first 18,050 steps of this walk are shown in Berg (1993, Fig. 1.4).
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Aswe have seen,when E. coliswims, it picks directions at random.
Therefore, it also diffuses. The step lengths for a motile cell are much
longer than those due to thermal agitation, but they do not occur as
often. The translational diffusion coefficient for a wild-type cell is
much larger than that for a nonmotile cell, roughly D =4 x 107'°
m%sec, as compared to 2 x 10 m?¥sec. But even a smooth-
swimming mutant executes a random walk, because rotational
diffusion carries the cell off course. The same kind of coin-flipping
experiment with increments in angle yields a mean-square angular
displacement about one axis (6% = 2D, where D, is a rotational
diffusion coefficient. For globular-shaped particles in water, D, is
proportional to 7/a’n. As noted earlier, this mechanism carries E.
coli off course by about 90 degrees in 10 seconds. As a result, the
translational diffusion coefficient for the smooth-swimming mutant
works out to about D =2 x 10 m%/sec, roughly 5 times that of the
wild-type cell. To learn more, see Berg (1993, Chapters 4, 6).

Diffusion of Attractants or Repellents

Diffusion of attractants or repellents sets a lower limit on the dis-
tance (and thus the time) that a cell must swim to outrun diffu-
sion (to reach greener pastures), as well as on the precision with
which the cell, in a given time, can determine concentrations.
Diffusion of attractants or repellents also determines the number
of receptors of a given kind that the cell needs to carry out these
measurements. If a cell remains in one place for time ¢, it will
sample molecules that come from a distance of order (Df)"?,
where D is their diffusion coefficient. If the cell swims at velocity
v during time ¢, it will be displaced a distance of order vz. If it is
to go far enough to find out whether life is getting better or worse,
it must outrun diffusion. This implies vt > (D)'?, or ¢ > D/v%. For
E. coli swimming 30um/sec, t > (10°m?¥sec)/(3 x 105 m/sec)’ =
1sec. This time is approximately equal to the mean run length.
Recall that when a cell responds to gradients of attractants or
repellents, it tends to extend runs rather than shorten them.
Presumably, it does this because it can learn more by doing so.
Short runs are not very informative.

If attractants or repellents are absorbed by a moving cell, there
are fewer available at the back than at the front, but the differ-
ence proves to be small (Berg and Purcell, 1977). Nevertheless,
this difference is large enough to rule out a mechanism in which
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a rapidly moving cell compares counts in the front with those
in the back, that is, in which it makes spatial comparisons. The ap-
parent gradient generated by the motion is several hundred
times steeper than gradients encountered during chemotaxis. As
a result, were the cell to choose a new direction at random, any
direction would be deemed favorable. In other respects, however,
the spatial mechanism is viable: a stationary cell could obtain the
precision required to detect small differences in oonooEB:oam at
its poles, simply by counting molecules for a relatively long time.
The moving cell does so by comparing counts as a function of time,
that is, by making temporal comparisons.

It is possible to estimate the time required for a cell to measure
the concentraton of molecules with a given precision. Assume that
the cell can count molecules in its own volume, a’, where a is
its linear dimension (10°m). The result of one such count is a°C,
where C is the mean concentration of molecules in its environ-
ment. Sampling of this kind is governed by the Poisson distribu-
tion, and the standard deviation is equal to the square-root of the
mean (Berg, 1993, p. 90). Therefore, the uncertainty in the count
is (a°C)"?, yielding a precision (the standard deviation divided by
the mean) of (a°C)™. For E. coli in, say, 1 uM aspartate, (a’C)1?
= [(10°m)?* (6 x 10 molecules/m’)]"” = 0.04, or 4%. The cell can
do better by waiting for the molecules that it has counted to
diffuse away and for another set to diffuse in. If this happens, the
two counts will be statistically independent. The required waiting
time is of order a*/D, where D is the diffusion coefficient. If the
cell continues this process for time ¢, the total count will increase
by a factor #/(a¥/D) = Di/d’, yielding a final count DaCt, with
precision (DaCr)™”. For t = 1sec,a = 10®m, and D = 10° m?/sec,
Dt/a* = 10°, yielding a precision of about 0.1%.

To determine whether the concentration is going up or down,
the cell has to make two such measurements and take the differ-
ence. It will not be able to make an informed decision unless this
difference is larger than its standard deviation. Since things
improve as 12, it would appear that the cell might work to arbi-
trarily high precision, simply by counting for very long times. But
as we have seen, rotational brownian movement of the cell body
sets an upper limit of order 1 = 10sec. To correct its course, the cell
must deal with the recent past, not the distant past. So, for the
counts to be large enough, C cannot be too small. For a cell swim-
ming 30 um/sec integrating counts over periods of 1sec, a preci-
sion of 0.1% (as estimated for 1M aspartate, above) is sufficient



58 6. Physical Constraints

for sensing a gradient with a decay length of about 2cm. For a
more rigorous discussion of the counting problem, see Berg and
Purcell (1977). .

There is an additional wrinkle. The cell can only count mole-
cules if they bind to a receptor. The chemotaxis machinery inside
the cell monitors the occupancy of these receptors. A molecule of
attractant diffuses around until it finds an empty binding site,
sticks for a short time, and then diffuses away. The ratio of the off-
to the on-rates is known as the dissociation constant, K,, which
equals the concentration, in moles per liter, at which the receptor
occupancy is one-half. This is the concentration at which the recep-
tors are most sensitive to fractional changes in concentration. To
work at concentrations large enough for adequate precision, the
receptors for the best attractants (e.g., aspartate or serine) have
dissociation constants in the micromolar range. If the on-rates
are diffusion limited, the dwell times (inverse off-rates) turn out
to be about 10™sec. Therefore, some device within the cell must
compute the fraction of time that a receptor is occupied. Mole-
cules continuously bind to the receptor and diffuse away, sticking
for a time quite short compared to the time required for the cell
to complete a single measurement.

How many receptors of a given kind must a cell have to count
a substantial fraction of the molecules that impinge on its surface?
As evident from the preceding discussion and Fig. 6.3, it takes a
given molecule a relatively long time to reach a specific region of
space. But once it is there, it explores that region rather thor-
oughly. Once a molecule encounters the cell surface, it tends to
collide with that surface hundreds or thousands of times before it
wanders away for good. As a result, it has an excellent chance of
encountering a specific binding site. One can show that E. coli can
do about half as well with a few thousand receptors of a given kind
as it would do were its entire surface dedicated to that one spe-
cific task (see Berg, 1993, pp. 30-33). As a result, the cell has room
for many different kinds of receptors (or transporters), each
working at reasonable efficiency. This is a boon, not a constraint.
Without benefits of this kind, microscopic life would not be
possible.

Recapitulation

Since E. coli is more familiar with this world that we are, let me
repeat. Flagellar filaments are long, thin, and helical, because
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motion is dominated by viscous rather than Emnam_ mﬁ.:nmm“ S.a:mﬁ
is generated by viscous drag. A cell is unable to swim in a straight
line, because rotational perturbations due to brownian movement
knock it off its path. Long runs are more effective for exploring
the environment than short ones, because they allow the cell to
outrun diffusion of the molecules that it needs to count. Rapidly
moving cells must sense chemical gradients 85@08:.% B:.:wn than
spatially, because comparisons between concentrations in ?omﬁ
or behind are overwhelmed by diffusive currents due to their
motion. Finally, the precision with which a cell can make ﬂoBmo-
ral comparisons is limited by statistical fluctuations. The counting
statistics improve with the square root of the product of the con-
centration and the integration time. A chemical cannot be sensed
at an arbitraily low concentration because the integration time
required would be prohibitively long.
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