
Inclusive fitness theory and eusociality
ARISING FROM M. A. Nowak, C. E. Tarnita & E. O. Wilson Nature 466, 1057–1062 (2010)

Nowak et al.1 argue that inclusive fitness theory has been of little value
in explaining the natural world, and that it has led to negligible pro-
gress in explaining the evolution of eusociality. However, we believe
that their arguments are based upon a misunderstanding of evolu-
tionary theory and a misrepresentation of the empirical literature. We
will focus our comments on three general issues.

First, Nowak et al.1 are incorrect to suggest a sharp distinction
between inclusive fitness theory and ‘‘standard natural selection
theory’’. Natural selection explains the appearance of design in the
living world, and inclusive fitness theory explains what this design is
for. Specifically, natural selection leads organisms to become adapted
as if to maximize their inclusive fitness2–4. Inclusive fitness theory is
based upon population genetics, and is used to make falsifiable pre-
dictions about how natural selection shapes phenotypes, and so it is
not surprising that it generates identical predictions to those obtained
using other methods2,5–7.

Second, Nowak et al.1 are incorrect to state that inclusive fitness
requires a number of ‘‘stringent assumptions’’ such as pairwise inter-
actions, weak selection, linearity, additivity and special population
structures. Hamilton’s original formulations did not make all these
assumptions, and generalizations have shown that none of them is
required3,5,6,8. Inclusive fitness is as general as the genetical theory of
natural selection itself. It simply partitions natural selection into its
direct and indirect components.

Nowak et al.1 appear to have confused the completely general theory
of inclusive fitness with models of specific cases. Yes, researchers often
make limiting assumptions for reasons of analytical tractability when
considering specific scenarios5,7, as with any modelling approach. For
example, Nowak et al.1 assume a specific form of genetic control, where
dispersal and helping are determined by the same single locus, that
mating is monogamous, and so on. However, the inclusive fitness
approach has facilitated, not hindered, empirical testing of evolutionary
theory9–11. Indeed, an advantage of inclusive fitness theory is that it
readily generates testable predictions in situations where the precise
genetic architecture of a phenotypic trait is unknown.

Third, we dispute the claim of Nowak et al.1 that inclusive fitness
theory ‘‘does not provide any additional biological insight’’, delivering
only ‘‘hypothetical explanations’’, leading only to routine measure-
ments and ‘‘correlative studies’’, and that the theory has ‘‘evolved into
an abstract enterprise largely on its own’’, with a failure to consider
multiple competing hypotheses. We cannot explain these claims,
which seem to overlook the extensive empirical literature that has
accumulated over the past 40 years in the fields of behavioural and
evolutionary ecology9–11 (Table 1). Of course, studies must consider
the direct consequences of behaviours, as well as consequences for
relatives, but no one claims otherwise, and this does not change the
fact that relatedness (and lots of other variables) has been shown to be
important in all of the above areas.

We do not have space to detail all the advances that have been made
in the areas described in Table 1. However, a challenge to the claims of
Nowak et al.1 is demonstrated with a single example, that of sex
allocation (the ratio of investment into males versus females). We
choose sex allocation because: (1) Nowak et al.1 argue that inclusive
fitness theory has provided only ‘‘hypothetical explanations’’ in this
field; (2) it is an easily quantified social trait, which inclusive fitness
theory predicts can be influenced by interactions between relatives;
and (3) the study of sex allocation has been central to evolutionary
work on the eusocial insects. In contrast to the claims of Nowak et al.1,

recent reviews of sex allocation show that the theory explains why sex
allocation varies with female density, inbreeding rate, dispersal rate,
brood size, order of oviposition, sib-mating, asymmetrical larval com-
petition, mortality rate, the presence of helpers, resource availability
and nest density in organisms such as protozoan parasites, nematodes,
insects, spiders, mites, reptiles, birds, mammals and plants5,12,13.

The quantitative success of this research is demonstrated by the
percentage of the variance explained in the data. Inclusive fitness
theory has explained up to 96% of the sex ratio variance in across-
species studies and 66% in within-species studies13. The average for all
evolutionary and ecological studies is 5.4%. As well as explaining
adaptive variation in behaviour, inclusive fitness theory has even
elucidated when and why individuals make mistakes (maladaptation),
in response to factors such as mechanistic constraints13. It is not
clear how Nowak et al.1 can characterize such quantifiable success
as ‘‘meagre’’. Their conclusions are based upon a discussion in the
Supplementary Information of just three papers (by authors who
disagree with the interpretations of Nowak et al.1), out of an empirical
literature of thousands of research articles. This would seem to indi-
cate a failure to engage seriously with the body of work that they
recommend we abandon.

The same points can be made with regard to the evolution of the
eusocial insects, which Nowak et al.1 suggest cannot be explained by
inclusive fitness theory. It was already known that haplodiploidy itself
may have only a relatively minor bearing on the origin of eusociality,
and so Nowak et al.1 have added nothing new here. Inclusive fitness
theory has explained why eusociality has evolved only in monogam-
ous lineages, and why it is correlated with certain ecological condi-
tions, such as extended parental care and defence of a shared
resource14,15. Furthermore, inclusive fitness theory has made very
successful predictions about behaviour in eusocial insects, explaining
a wide range of phenomena (Table 2).

Ultimately, any body of biological theory must be judged on its
ability to make novel predictions and explain biological phenomena;
we believe that Nowak et al.1 do neither. The only prediction made by
their model (that offspring are favoured to help their monogamously

Table 1 | Inclusive fitness theory has been important in understanding a
range of behavioural phenomena

Research area Correlational? Experimental? Theory–data interplay

Sex allocation Yes Yes Yes
Policing Yes Yes Yes
Conflict resolution Yes Yes Yes
Cooperation Yes Yes Yes
Altruism Yes Yes Yes
Spite Yes Yes Yes
Kin discrimination Yes Yes Yes
Parasite virulence Yes Yes Yes
Parent–offspring conflict Yes Yes Yes
Sibling conflict Yes Yes Yes
Selfish genetic elements Yes Yes Yes
Cannibalism Yes Yes Yes
Dispersal Yes Yes Yes
Alarm calls Yes Yes Yes
Eusociality Yes Yes Yes
Genomic imprinting Yes Yes Yes

Data are taken from refs 9–11. Correlational studies test predictions using natural variation in key
variables, whereas experimental studies involve their experimental manipulation. Interplay between
theory and data means that theory has informed empirical study, and vice versa. Inclusive fitness is not
the only way to model evolution, but it has already proven to be an immensely productive and useful
approach for studying eusociality and other social behaviours.
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mated mother if this provides a sufficient benefit) merely confirms, in
a less general way, Hamilton’s original point: if the fitness benefits are
great enough, then altruism is favoured between relatives.
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Edward L. Vargo95, Bernard Voelkl96, Tom Wenseleers97,
Stuart A. West5, Mary Jane West-Eberhard98, David F. Westneat99,
Diane C. Wiernasz22, Geoff Wild100, Richard Wrangham101,
Andrew J. Young17, David W. Zeh102, Jeanne A. Zeh102 &
Andrew Zink103

1Vanderbilt University, Nashville, Tennessee 37235, USA.

2Laboratory of Applied Entomology, Faculty of Agriculture, Shizuoka
University, Sizuoka 422-8529, Japan.
3School of Life Sciences, PO Box 874501, Arizona State University,
Tempe, Arizona 85287-4501, USA.
4UMR CNRS-IRD 2724, Genetics and Evolution of Infectious Diseases,
IRD, 911 Avenue Agropolis, B.P. 64501, 34394 Montpellier Cedex 5,
France.
5Department of Zoology, University of Oxford, South Parks Road, Oxford,
OX1 3PS, UK.
e-mail: Stuart.West@zoo.ox.ac.uk
6Department of Zoology, University of Gothenburg, SE 405 30
Gothenburg, Sweden.
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Table 2 | Areas in which inclusive fitness theory has made successful predictions about behaviour in eusocial insects

Trait examined Explanatory variables Correlational
studies?

Experimental
studies?

Interplay between
theory and data?

Altruistic helping Haplodiploidy versus diploidy Yes No Yes
Worker egg laying Worker policing Yes Yes Yes
Policing Relatedness Yes Yes Yes
Level of cooperation Costs, benefits and relatedness Yes Yes Yes
Intensity of work Need for work and probability of becoming queen Yes Yes Yes
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Yes Yes Yes

Sex allocation Resource availability Yes Yes Yes
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Exclusion of non-kin Colony membership Yes Yes Yes

Data are taken from refs 12–16.
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Only full-sibling families evolved eusociality
ARISING FROM M. A. Nowak, C. E. Tarnita & E. O. Wilson Nature 466, 1057–1062 (2010)

The paper by Nowak et al.1 has the evolution of eusociality as its title,
but it is mostly about something else. It argues against inclusive fitness
theory and offers an alternative modelling approach that is claimed to
be more fundamental and general, but which, we believe, has no prac-
tical biological meaning for the evolution of eusociality. Nowak et al.1

overlook the robust empirical observation that eusociality has only
arisen in clades where mothers are associated with their full-sibling
offspring; that is, in families where the average relatedness of offspring
to siblings is as high as to their own offspring, independent of popu-
lation structure or ploidy. We believe that this omission makes the
paper largely irrelevant for understanding the evolution of eusociality.

Eusociality is not just any form of condition-dependent reproductive
altruism as found in cooperative breeders, but the permanent division of
reproductive labour. Clades where helpers became irreversibly eusocial
(ants, some bees, some wasps, and termites2) are old, radiated into many
subclades over evolutionary time, and achieved considerable ecological
footprints. A recent comparative study3 showed that all hymenopteran

clades that fit the standard definition of eusociality4 evolved from life-
time monogamous ancestors5–8. This implies that high relatedness
always preceded or coincided with eusociality, and contrasts with the
contention of Nowak et al.1 that eusociality can evolve in any group with
parental care, or that high relatedness arises after eusociality.

Given that promiscuity is the most common mating system in
animals, strict ancestral monogamy throughout eusocial clades
implies that high relatedness was necessary for eusociality to evolve.
Nonetheless, necessity does not imply sufficiency. Monogamous
lineages may have remained solitary because the benefits of helping
at the nest were insufficient to surpass independent breeding. This is
elegantly captured by the ratio of the parameters b and c in Hamilton’s
rule. In a number of ant, bee and wasp genera the high relatedness
condition for eusociality has become secondarily relaxed via evolu-
tionary elaborations such as multiple queen mating, but this has only
occurred after worker phenotypes had specialized so that opting out to
independent breeding had become selectively disadvantageous or
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