Inclusive fitness theory and eusociality

ARISING FROM M. A. Nowak, C. E. Tarnita & E. O. Wilson Nature 466, 1057–1062 (2010)

Nowak *et al.*¹ argue that inclusive fitness theory has been of little value in explaining the natural world, and that it has led to negligible progress in explaining the evolution of eusociality. However, we believe that their arguments are based upon a misunderstanding of evolutionary theory and a misrepresentation of the empirical literature. We will focus our comments on three general issues.

First, Nowak *et al.*¹ are incorrect to suggest a sharp distinction between inclusive fitness theory and "standard natural selection theory". Natural selection explains the appearance of design in the living world, and inclusive fitness theory explains what this design is for. Specifically, natural selection leads organisms to become adapted as if to maximize their inclusive fitness^{2–4}. Inclusive fitness theory is based upon population genetics, and is used to make falsifiable predictions about how natural selection shapes phenotypes, and so it is not surprising that it generates identical predictions to those obtained using other methods^{2,5–7}.

Second, Nowak *et al.*¹ are incorrect to state that inclusive fitness requires a number of "stringent assumptions" such as pairwise interactions, weak selection, linearity, additivity and special population structures. Hamilton's original formulations did not make all these assumptions, and generalizations have shown that none of them is required^{3,5,6,8}. Inclusive fitness is as general as the genetical theory of natural selection itself. It simply partitions natural selection into its direct and indirect components.

Nowak *et al.*¹ appear to have confused the completely general theory of inclusive fitness with models of specific cases. Yes, researchers often make limiting assumptions for reasons of analytical tractability when considering specific scenarios^{5,7}, as with any modelling approach. For example, Nowak *et al.*¹ assume a specific form of genetic control, where dispersal and helping are determined by the same single locus, that mating is monogamous, and so on. However, the inclusive fitness approach has facilitated, not hindered, empirical testing of evolutionary theory^{9–11}. Indeed, an advantage of inclusive fitness theory is that it readily generates testable predictions in situations where the precise genetic architecture of a phenotypic trait is unknown.

Third, we dispute the claim of Nowak *et al.*¹ that inclusive fitness theory "does not provide any additional biological insight", delivering only "hypothetical explanations", leading only to routine measurements and "correlative studies", and that the theory has "evolved into an abstract enterprise largely on its own", with a failure to consider multiple competing hypotheses. We cannot explain these claims, which seem to overlook the extensive empirical literature that has accumulated over the past 40 years in the fields of behavioural and evolutionary ecology⁹⁻¹¹ (Table 1). Of course, studies must consider the direct consequences of behaviours, as well as consequences for relatives, but no one claims otherwise, and this does not change the fact that relatedness (and lots of other variables) has been shown to be important in all of the above areas.

We do not have space to detail all the advances that have been made in the areas described in Table 1. However, a challenge to the claims of Nowak *et al.*¹ is demonstrated with a single example, that of sex allocation (the ratio of investment into males versus females). We choose sex allocation because: (1) Nowak *et al.*¹ argue that inclusive fitness theory has provided only "hypothetical explanations" in this field; (2) it is an easily quantified social trait, which inclusive fitness theory predicts can be influenced by interactions between relatives; and (3) the study of sex allocation has been central to evolutionary work on the eusocial insects. In contrast to the claims of Nowak *et al.*¹, recent reviews of sex allocation show that the theory explains why sex allocation varies with female density, inbreeding rate, dispersal rate, brood size, order of oviposition, sib-mating, asymmetrical larval competition, mortality rate, the presence of helpers, resource availability and nest density in organisms such as protozoan parasites, nematodes, insects, spiders, mites, reptiles, birds, mammals and plants^{5,12,13}.

The quantitative success of this research is demonstrated by the percentage of the variance explained in the data. Inclusive fitness theory has explained up to 96% of the sex ratio variance in across-species studies and 66% in within-species studies¹³. The average for all evolutionary and ecological studies is 5.4%. As well as explaining adaptive variation in behaviour, inclusive fitness theory has even elucidated when and why individuals make mistakes (maladaptation), in response to factors such as mechanistic constraints¹³. It is not clear how Nowak *et al.*¹ can characterize such quantifiable success as "meagre". Their conclusions are based upon a discussion in the Supplementary Information of just three papers (by authors who disagree with the interpretations of Nowak *et al.*¹), out of an empirical literature of thousands of research articles. This would seem to indicate a failure to engage seriously with the body of work that they recommend we abandon.

The same points can be made with regard to the evolution of the eusocial insects, which Nowak *et al.*¹ suggest cannot be explained by inclusive fitness theory. It was already known that haplodiploidy itself may have only a relatively minor bearing on the origin of eusociality, and so Nowak *et al.*¹ have added nothing new here. Inclusive fitness theory has explained why eusociality has evolved only in monogamous lineages, and why it is correlated with certain ecological conditions, such as extended parental care and defence of a shared resource^{14,15}. Furthermore, inclusive fitness theory has made very successful predictions about behaviour in eusocial insects, explaining a wide range of phenomena (Table 2).

Ultimately, any body of biological theory must be judged on its ability to make novel predictions and explain biological phenomena; we believe that Nowak *et al.*¹ do neither. The only prediction made by their model (that offspring are favoured to help their monogamously

Table 1 | Inclusive fitness theory has been important in understanding a range of behavioural phenomena

Research area	Correlational?	Experimental?	Theory–data interplay	
Sex allocation	Yes	Yes	Yes	
Policing	Yes	Yes	Yes	
Conflict resolution	Yes	Yes	Yes	
Cooperation	Yes	Yes	Yes	
Altruism	Yes	Yes	Yes	
Spite	Yes	Yes	Yes	
Kin discrimination	Yes	Yes	Yes	
Parasite virulence	Yes	Yes	Yes	
Parent–offspring conflict	Yes	Yes	Yes	
Sibling conflict	Yes	Yes	Yes	
Selfish genetic elements	Yes	Yes	Yes	
Cannibalism	Yes	Yes	Yes	
Dispersal	Yes	Yes	Yes	
Alarm calls	Yes	Yes	Yes	
Eusociality	Yes	Yes	Yes	
Genomic imprinting	Yes	Yes	Yes	

Data are taken from refs 9–11. Correlational studies test predictions using natural variation in key variables, whereas experimental studies involve their experimental manipulation. Interplay between theory and data means that theory has informed empirical study, and vice versa. Inclusive fitness is not the only way to model evolution, but it has already proven to be an immensely productive and useful approach for studying eusociality and other social behaviours.

Trait examined	amined Explanatory variables		Experimental studies?	Interplay between theory and data?
Altruistic helping	Haplodiploidy versus diploidy	Yes	No	Yes
Worker egg laying	Worker policing	Yes	Yes	Yes
Policing	Relatedness	Yes	Yes	Yes
Level of cooperation	Costs, benefits and relatedness	Yes	Yes	Yes
Intensity of work	Need for work and probability of becoming queen	Yes	Yes	Yes
Sex allocation	Relatedness asymmetries due to variation in queen survival, queen number and mating frequency	Yes	Yes	Yes
Sex allocation	Resource availability	Yes	Yes	Yes
Sex allocation	Competition for mates between related males	Yes	Yes	Yes
Number of individuals trying to become reproductive	Presence of old gueens	Yes	Yes	Yes
Workers killing queens	Presence of workers, reproductives or other queens	Yes	No	No
Exclusion of non-kin	Colony membership	Yes	Yes	Yes

Table 2 | Areas in which inclusive fitness theory has made successful predictions about behaviour in eusocial insects

Data are taken from refs 12–16.

mated mother if this provides a sufficient benefit) merely confirms, in a less general way, Hamilton's original point: if the fitness benefits are great enough, then altruism is favoured between relatives.

Patrick Abbot¹, Jun Abe², John Alcock³, Samuel Alizon⁴, Joao A. C. Alpedrinha⁵, Malte Andersson⁶, Jean-Baptiste Andre⁷, Minus van Baalen⁷, Francois Balloux⁸, Sigal Balshine⁹, Nick Barton¹⁰, Leo W. Beukeboom¹¹, Jay M. Biernaskie⁵, Trine Bilde¹², Gerald Borgia¹³, Michael Breed¹⁴, Sam Brown⁵, Redouan Bshary¹⁵, Angus Buckling⁵, Nancy T. Burley¹⁶, Max N. Burton-Chellew⁵, Michael A. Cant¹⁷, Michel Chapuisat¹⁸, Eric L. Charnov¹⁹, Tim Clutton-Brock²⁰, Andrew Cockburn²¹, Blaine J. Cole²², Nick Colegrave²³, Leda Cosmides²⁴, Jain D. Couzin²⁵, Jerry A. Coyne²⁶, Scott Creel²⁷, Bernard Crespi²⁸, Robert L. Curry²⁹, Sasha R. X. Dall¹⁷, Troy Day³⁰, Janis L. Dickinson³¹, Lee Alan Dugatkin³², Claire El Mouden⁵, Stephen T. Emlen³³, Jay Evans³⁴, Regis Ferriere³⁵, Jeremy Field³⁶, Susanne Foitzik³⁷, Kevin Foster⁵, William A. Foster²⁰, Charles W. Fox³⁸, Juergen Gadau³⁹, Sylvain Gandon⁴⁰, Andy Gardner⁵, Michael G. Gardner⁴¹, Thomas Getty⁴², Michael A. D. Goodisman⁴³, Alan Grafen⁵, Rick Grosberg⁴⁴, Christina M. Grozinger⁴⁵, Pierre-Henri Gouyon⁴⁶, Darryl Gwynne⁴⁷, Paul H. Harvey⁵, Ben J. Hatchwell⁴⁸, Jürgen Heinze⁴⁹, Heikki Helantera⁵⁰, Ken R. Helms⁵¹, Kim Hill⁵², Natalie Jiricny⁵, Rufus A. Johnstone²⁰, Alex Kacelnik⁵, E. Toby Kiers⁵³, Hanna Kokko²¹, Jan Komdeur⁵⁴, Judith Korb⁵⁵, Daniel Kronauer⁵⁶, Rolf Kümmerli⁵⁷, Laurent Lehmann¹⁵, Timothy A. Linksvayer⁵⁸, Sébastien Lion⁵⁹, Bruce Lyon⁶⁰, James A. R. Marshall⁶¹, Richard McElreath⁶², Yannis Michalakis⁴, Richard E. Michod⁶³, Douglas Mock⁶⁴, Thibaud Monnin⁷, Robert Montgomerie⁶⁵, Allen J. Moore¹⁷, Ulrich G. Mueller⁶⁶, Ronald Noë⁶⁷, Samir Okasha⁶⁸, Pekka Pamilo⁶⁹, Geoff A. Parker⁷⁰, Jes S. Pedersen⁵⁸, Ido Pen⁷¹, David Pfennig⁷², David C. Queller⁷³, Daniel J. Rankin⁷⁴, Sarah E. Reece²³, Hudson K. Reeve³³, Max Reuter⁷⁵, Gilbert Roberts⁷⁶, Simon K. A. Robson⁷⁷, Denis Roze⁷⁸, Francois Rousset⁷⁹, Olav Rueppell⁸⁰, Joel L. Sachs⁸¹, Lorenzo Santorelli⁵, Paul Schmid-Hempel⁸², Michael P. Schwarz⁴¹, Tom Scott-Phillips⁸³, Janet Shellmann-Sherman³³, Paul W. Sherman³³, David M. Shuker⁸⁴, Jeff Smith⁷³, Joseph C. Spagna⁸⁵, Beverly Strassmann⁸⁶, Andrew V. Suarez⁸⁷, Liselotte Sundström⁵⁰, Michael Taborsky⁸⁸, Peter Taylor³⁰, Graham Thompson⁸⁹, John Tooby⁹⁰, Neil D. Tsutsui⁹¹, Kazuki Tsuji⁹², Stefano Turillazzi⁹³, Francisco Úbeda⁹⁴, Edward L. Vargo⁹⁵, Bernard Voelkl⁹⁶, Tom Wenseleers⁹⁷, Stuart A. West⁵, Mary Jane West-Eberhard⁹⁸, David F. Westneat⁹⁹, Diane C. Wiernasz²², Geoff Wild¹⁰⁰, Richard Wrangham¹⁰¹, Andrew J. Young¹⁷, David W. Zeh¹⁰², Jeanne A. Zeh¹⁰² & Andrew Zink¹⁰³

²Laboratory of Applied Entomology, Faculty of Agriculture, Shizuoka University, Sizuoka 422-8529, Japan.

³School of Life Sciences, PO Box 874501, Arizona State University, Tempe, Arizona 85287-4501, USA.

⁴UMR CNRS-IRD 2724, Genetics and Evolution of Infectious Diseases, IRD, 911 Avenue Agropolis, B.P. 64501, 34394 Montpellier Cedex 5, France.

⁵Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.

e-mail: Stuart.West@zoo.ox.ac.uk

⁶Department of Zoology, University of Gothenburg, SE 405 30 Gothenburg, Sweden.

⁷CNRS, Université Pierre et Marie Curie, Ecole Normale Supérieure, UMR 7625, Ecologie and Evolution, 75005 Paris, France.

⁸MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College, St Mary's Campus, Norfolk Place, London W2 1PG, UK.

⁹Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main St West, Hamilton, Ontario L8S 4K1, Canada. ¹⁰IST Austria, Am Campus 1, Klosterneuburg 3400, Austria.

¹¹Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, University of Groningen, PO Box 14, NL-9750 AA Haren, The Netherlands. ¹²Aarhus University, Department of Biological Sciences, Ny Munkegade 1540, 8000 Aarhus C, Denmark.

¹³Department of Biology, University of Maryland, College Park, Maryland 20742-4415, USA.

¹⁴Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309-0334, USA.

¹⁵Faculté des sciences, Rue Emile-Argand 11, Case postale 158, 2000 Neuchâtel, Switzerland.

¹⁶Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, California 92697-2525, USA.

¹⁷Centre for Ecology and Conservation, University of Exeter, Cornwall, Tremough, Penryn TR10 9EZ, UK.

¹⁸Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.

¹⁹Department of Biology, 167 Castetter Hall, MSC03 2020, 1 University of New Mexico, Albuquerque, New Mexico 87131-000, USA.

²⁰Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.

²¹Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.

²²Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, USA.

²³Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3JT, UK.

BRIEF COMMUNICATIONS ARISING

²⁴Department of Psychology, University of California, Santa Barbara, Santa Barbara, California 93106-9660, USA.

²⁵Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08540, USA.

²⁶Department of Ecology and Evolution, The University of Chicago, 1101
 E. 57 Street, Chicago, Illinois 60637, USA.

²⁷Department of Ecology, Montana State University, Bozeman, Montana 59717, USA.

²⁸Department of Biosciences, 8888 University Drive, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada.

²⁹Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, USA.

³⁰Department of Mathematics and Statistics, Queen's University, Kingston, Ontario K7L 3N6, Canada.

³¹The Cornell Laboratory of Ornithology, Cornell University — The Johnson Center, 159 Sapsucker Woods Road, Ithaca, New York 14850, USA.

³²Department of Biology, University of Louisville, Louisville, Kentucky 40292, USA.

³³Seeley G. Mudd Hall, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA.

³⁴USDA-ARS Bee Research Laboratory, BARC-E Bldg 476, Beltsville, Maryland 20705, USA.

³⁵Laboratoire Ecologie and Evolution, CNRS UMR 7625, Ecole Normale Superieure, 46 rue d'Ulm, 75005 Paris, France; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.

³⁶School of Life Sciences, John Maynard Smith Building, University of Sussex, Brighton BN1 9QG, UK.

³⁷Department Biologie II Behavioral Ecology (Verhaltensökologie), Ludwig-Maximilians-Universität, München Großhaderner Str. 2 D - 82152 Planegg/Martinsried, Germany.

³⁸Department of Entomology, University of Kentucky, Lexington, Kentucky 40546-0091, USA.

³⁹School of Life Sciences, Arizona State University, PO Box 874501, Tempe, Arizona 85287-4501, USA.

⁴⁰CEFE - UMR 5175, 1919 route de Mende, F-34293 Montpellier Cedex 5, France.

⁴¹School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia.

⁴²Kellogg Biological Station and Department of Zoology, Michigan State University, Hickory Corners, Michigan 49060, USA.

⁴³School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, Georgia 30332-0230, USA.

⁴⁴Department of Evolution and Ecology, College of Biological Sciences, 1 Shields Avenue, UC Davis, Davis, California 95616, USA.

⁴⁵Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, Chemical Ecology Lab 4A, University Park, Pennsylvania 16802, USA.

⁴⁶Muséum National d'Histoire Naturelle, CP39, 12 rue Buffon, 75005 Paris, France.

⁴⁷Biology Department, University of Toronto, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.

⁴⁸Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.

⁴⁹Biologie I, Universität Regensburg, D-93040 Regensburg, Germany.
⁵⁰Department of Biosciences, PL 65 (Viikinkaari 1), FI-00014 University of Helsinki, Finland.

⁵¹Department of Biology, University of Vermont, Burlington, Vermont 05405, USA.

⁵²School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona 85287-2402, USA. ⁵³Department of Animal Ecology, Institute of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands.

⁵⁴Animal Ecology Group, Centre for Evolutionary and Ecological Studies, University of Groningen, PO Box 14, 9750 AA Haren, The Netherlands.
⁵⁵University of Osnabrueck, Barbarastr.11, D-49076 Osnabrueck, Germany.

⁵⁶Harvard University, Museum of Comparative Zoology, 26 Oxford St, Cambridge, Massachusetts 02138, USA.

⁵⁷Environmental Microbiology, Swiss Federal Institute of Aquatic Research and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland.

⁵⁸Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
⁵⁹School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK.

⁶⁰Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA.

⁶¹Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK.

⁶²Department of Anthropology and Center for Population Biology, UC Davis, Davis, California 95616, USA.

⁶³Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.

⁶⁴Department of Zoology, 730 Van Vleet Oval, University of Oklahoma, Norman, Oklahoma 73019, USA.

⁶⁵Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.

⁶⁶Integrative Biology, University of Texas at Austin, 1 University Station C0930, Austin, Texas 78712, USA.

⁶⁷Psychologie — Université de Strasbourg, Ethologie des Primates — DEPE (IPHC CNRS UMR 7178), 23 rue Becquerel — Strasbourg 67087, Cedex, France.

⁶⁸Department of Philosophy, University of Bristol, Bristol BS8 1TB, UK.
⁶⁹Biocenter Oulu and Department of Biosciences, University of Helsinki, Box 65, 00140 University of Helsinki, Finland

⁷⁰Institute of Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK.

⁷¹Theoretical Biology group, University of Groningen, PO Box 14, 9750 AA Haren, The Netherlands.

⁷²Department of Biology, CB#3280, Coker Hall, University of North Carolina, Chapel Hill, NC 27599-3280, USA.

⁷³Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas 77005-1892, USA.

⁷⁴Department of Biochemistry, University of Zurich, Building Y27, Office J-46, Winterthurstrasse 190, CH-8057 Zurich, Switzerland; Swiss

Institute of Bioinformatics, Quartier Sorge Bâtiment Génopode, CH- 1015 Lausanne, Switzerland.

⁷⁵Research Department of Genetics, Evolution and Environment, Faculty of Life Sciences, University College London, 4 Stephenson Way, London NW1 2HE, UK.

⁷⁶Centre for Behaviour and Evolution, Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Henry Wellcome Building,

Framlington Place, Newcastle upon Tyne NE2 4HH, UK.

⁷⁷School of Marine and Tropical Biology, James Cook University, Queensland 4811, Australia.

⁷⁸Station Biologique de Roscoff, CNRS-UPMC UMR 7144, 29680 Roscoff, France.

⁷⁹Institut des Sciences de l'Evolution, University of Montpellier 2, Montpellier 34095, France.

⁸⁰Department of Biology, University of North Carolina at Greensboro, 312 Eberhart Building, Greensboro, North Carolina 27403, USA.

BRIEF COMMUNICATIONS ARISING

⁸¹Department of Biology, 3314 Spieth Hall, University of California — Riverside, Riverside, California 92521, USA.

⁸²ETH Zurich, Institute of Integrative Biology (IBZ), Universitätsstrasse 16, CH.8092 Zürich, Switzerland.

⁸³School of Philosophy, Psychology and Language Sciences, University of Edinburgh, 3 Charles Street, Edinburgh EH8 9AD, UK.

⁸⁴School of Biology, University of St Andrews, Harold Mitchell Building, St Andrews, Fife KY16 9TH, UK.

⁸⁵William Paterson University of New Jersey, 300 Pompton Road, Wayne, New Jersey 07470, USA.

⁸⁶Department of Anthropology, 101 West Hall, University of Michigan, Ann Arbor, Michigan 48109, USA.

⁸⁷Department of Entomology and Department of Animal Biology, University of Illinois, Urbana, Illinois 61801, USA.

⁸⁸Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032 Hinterkappelen, Switzerland.

⁸⁹Department of Biology, University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada.

⁹⁰Department of Anthropology, University of California, Santa Barbara, California 93106-3210, USA.

⁹¹Deptartment of Environmental Science, Policy and Management, 130 Mulford Hall, 3114, University of California Berkeley, Berkeley, California 94720-3114, USA.

⁹²Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan.

⁹³Dipartimento di Biologia Evoluzionistica, Università degli Studi di Firenze, via Romana 17, 50125 Firenze, Italy.

⁹⁴Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville, Knoxville, Tennessee 37902, USA.

⁹⁵Department of Entomology, Box 7613, North Carolina State University, Raleigh, North Carolina 27695-7613, USA.

⁹⁶Institute for Theoretical Biology, Humboldt University zu Berlin, Invalidenstr. 43, D-10115 Germany.

⁹⁷Departmet of Biology, Zoological Institute, K.U. Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.

⁹⁸Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Panamá.

⁹⁹Department of Biology, 101 Morgan Building, University of Kentucky, Lexington, Kentucky 40506-0225, USA.

¹⁰⁰Department of Applied Mathematics, University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada.

¹⁰¹Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.

 ¹⁰²Department of Biology and Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Nevada 89557, USA.
 ¹⁰³Department of Biology, San Francisco State University, San Francisco, California 94132, USA.

Received 20 September; accepted 17 December 2010.

- Nowak, M. A., Tarnita, C. E. & Wilson, E. O. The evolution of eusociality. Nature 466, 1057–1062 (2010).
- Hamilton, W. D. The genetical evolution of social behaviour, I & II. J. Theor. Biol. 7, 1–52 (1964).
- Hamilton, W. D. Selfish and spiteful behaviour in an evolutionary model. Nature 228, 1218–1220 (1970).
- 4. Grafen, A. Optimisation of inclusive fitness. J. Theor. Biol. 238, 541–563 (2006).
- 5. Frank, S. A. Foundations of Social Evolution (Princeton Univ. Press, 1998).
- Gardner, A., West, S. A. & Barton, N. H. The relation between multilocus population genetics and social evolution theory. *Am. Nat.* 169, 207–226 (2007).
- Rousset, F. Genetic Structure and Selection in Subdivided Populations (Princeton Univ. Press, 2004).
- 8. Queller, D. C. A general model for kin selection. Evolution 46, 376–380 (1992).
- Krebs, J. R. & Davies, N. B. Behavioural Ecology. An Evolutionary Approach 4th edn (Blackwell Scientific, 1997).
- Foster, K. R. A defense of sociobiology. Cold Spring Harb. Symp. Quant. Biol. 74, 403–418 (2009).
- Westneat, D. F. & Fox, C. W. Evolutionary Behavioral Ecology (Oxford Univ. Press, 2010).
- 12. Hardý, I. C. W. Sex Ratios: Concepts and Research Methods (Cambridge Univ. Press, 2002).
- 13. West, S. A. Sex Allocation (Princeton Univ. Press, 2009).
- Queller, D. C. & Strassmann, J. E. Kin selection and social insects. *Bioscience* 48, 165–175 (1998).
- Boomsma, J. J. Lifetime monogamy and the evolution of eusociality. *Phil. Trans. R. Soc. Lond. B* 364, 3191–3207 (2009).
- Ratnieks, F. L. W., Foster, K. R. & Wenseleers, T. Conflict resolution in insect societies. Annu. Rev. Entomol. 51, 581–608 (2006).

Author Contributions All authors contributed to the planning, writing and/or revising of this paper. Several others who contributed significantly are not listed because they are named on separate comments.

Competing financial interests: declared none.

doi:10.1038/nature09831

Only full-sibling families evolved eusociality

ARISING FROM M. A. Nowak, C. E. Tarnita & E. O. Wilson Nature 466, 1057–1062 (2010)

The paper by Nowak *et al.*¹ has the evolution of eusociality as its title, but it is mostly about something else. It argues against inclusive fitness theory and offers an alternative modelling approach that is claimed to be more fundamental and general, but which, we believe, has no practical biological meaning for the evolution of eusociality. Nowak *et al.*¹ overlook the robust empirical observation that eusociality has only arisen in clades where mothers are associated with their full-sibling offspring; that is, in families where the average relatedness of offspring to siblings is as high as to their own offspring, independent of population structure or ploidy. We believe that this omission makes the paper largely irrelevant for understanding the evolution of eusociality.

Eusociality is not just any form of condition-dependent reproductive altruism as found in cooperative breeders, but the permanent division of reproductive labour. Clades where helpers became irreversibly eusocial (ants, some bees, some wasps, and termites²) are old, radiated into many subclades over evolutionary time, and achieved considerable ecological footprints. A recent comparative study³ showed that all hymenopteran clades that fit the standard definition of eusociality⁴ evolved from lifetime monogamous ancestors^{5–8}. This implies that high relatedness always preceded or coincided with eusociality, and contrasts with the contention of Nowak *et al.*¹ that eusociality can evolve in any group with parental care, or that high relatedness arises after eusociality.

Given that promiscuity is the most common mating system in animals, strict ancestral monogamy throughout eusocial clades implies that high relatedness was necessary for eusociality to evolve. Nonetheless, necessity does not imply sufficiency. Monogamous lineages may have remained solitary because the benefits of helping at the nest were insufficient to surpass independent breeding. This is elegantly captured by the ratio of the parameters *b* and *c* in Hamilton's rule. In a number of ant, bee and wasp genera the high relatedness condition for eusociality has become secondarily relaxed via evolutionary elaborations such as multiple queen mating, but this has only occurred after worker phenotypes had specialized so that opting out to independent breeding had become selectively disadvantageous or